Publications by authors named "Jian-Jie Liang"

Article Synopsis
  • Researchers developed and tested various l-cystine diamides to enhance the stability of l-cystine dimethyl ester (CDME) and l-cystine methyl ester (CME) while inhibiting l-cystine crystallization.
  • They discovered that l-cystine diamides without N-methylation effectively prevented l-cystine crystallization, whereas those with N-methylation lost this ability.
  • Computational studies revealed that N-methylation reduces the binding affinity of these diamides to the l-cystine crystal surface, with l-cystine bismorpholide and l-cystine bis(N'-methylpiperazide) identified as the most potent inhibitors.
View Article and Find Full Text PDF

l-Cystine bismorpholide (1a) and l-cystine bis(N'-methylpiperazide) (1b) were seven and twenty-four times more effective than l-cystine dimethyl ester (CDME) in increasing the metastable supersaturation range of l-cystine, respectively, effectively inhibiting l-cystine crystallization. This behavior can be attributed to inhibition of crystal growth at microscopic length scale, as revealed by atomic force microscopy. Both 1a and 1b are more stable than CDME, and 1b was effective in vivo in a knockout mouse model of cystinuria.

View Article and Find Full Text PDF

Oligoacenes form a fundamental class of polycyclic aromatic hydrocarbons (PAH) which have been extensively explored for use as organic (semi) conductors in the bulk phase and thin films. For this reason it is important to understand their electronic properties in the condensed phase. In this investigation, we use density functional theory with Tkatchenko-Scheffler dispersion correction to explore several crystalline oligoacenes (naphthalene, anthracene, tetracene, and pentacene) under pressures up to 25 GPa in an effort to uncover unique electronic/optical properties.

View Article and Find Full Text PDF

The isostatic pressure response of crystalline indole up to 25 GPa was investigated through static geometry optimization using Tkatchenko-Scheffler dispersion-corrected density functional theory method. Different symmetries were identified in the structural evolution with increased pressure, but no motif transition was observed, owing to the stability of the herringbone (HB) motif for small polycyclic aromatic hydrocarbons. Hirshfeld surface analysis determined that there was an increase in the fraction of H···π and π···π contacts within the high pressure structures, while the fraction of H···H contacts was lowered via geometric rearrangements.

View Article and Find Full Text PDF

The density functional theory (DFT) method was used to study the effect of nanoconfinement on the energetics of Mg-MgH2 systems. Varying levels of loading of the Mg/MgH2 particles into a (10,10) carbon nanotube were examined, and the corresponding energetics were computed. A clear trend was observed that, as the level of loading increases (increasing confinement), the net energy change in the hydrogen sorption/desorption processes decreases to a significant level when the loading approaches the maximum.

View Article and Find Full Text PDF