Yield and nutrient acquisition advantages are frequently found in intercropping systems. However, there are few published reports on soil fertility in intercropping relative to monocultures. A field experiment was therefore established in 2009 in Gansu province, northwest China.
View Article and Find Full Text PDFIntercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations.
View Article and Find Full Text PDFIntercropping, which grows at least two crop species on the same pieces of land at the same time, can increase grain yields greatly. Legume-grass intercrops are known to overyield because of legume nitrogen fixation. However, many agricultural soils are deficient in phosphorus.
View Article and Find Full Text PDF