Publications by authors named "Jian-Hao Chen"

Anti-ferromagnetic insulator chromium oxychloride (CrOCl) has shown peculiar charge transfer and correlation-enhanced emerging properties when interfaced with other van der Waals conductive channels. However, the influence of its spin states to the channel material remains largely unknown. Here, this issue is addressed by directly measuring the density of states in bilayer graphene (BLG) interfaced with CrOCl via a high-precision capacitance measurement technique and a surprising hysteretic behavior in the charging states of the heterostructure is observed.

View Article and Find Full Text PDF

The quantum Griffiths singularity (QGS) is a phenomenon driven by quenched disorders that break conventional scaling invariance and result in a divergent dynamic critical exponent during quantum phase transitions (QPT). While this phenomenon has been well-documented in low-dimensional conventional superconductors and in three-dimensional (3D) magnetic metal systems, its presence in 3D superconducting systems and in unconventional high-temperature superconductors (high- SCs) remains unclear. In this study, we report the observation of robust QGS in the superconductor-metal transition (SMT) of both quasi-2D and 3D anisotropic unconventional high- superconductor CaFe Ni AsF ( <5%) bulk single crystals, where the QGS states persist to up to 5.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores van der Waals heterostructures (vdWHs) and how their stacking can create unique quantum systems, demonstrating interesting physical phenomena.
  • - A specific example is 6R-TaS, where below about 30 K, a new phase shows features like a giant anomalous Hall effect and the interplay of nematicity and Ising superconductivity.
  • - The findings highlight the potential to engineer exotic quantum states by adjusting the interactions between different layers in these materials, revealing complex behaviors involving hidden magnetism.
View Article and Find Full Text PDF

Transition metal compounds with kagome structure have been found to exhibit a variety of exotic structural, electronic, and magnetic orders. These orders are competing with energies very close to each other, resulting in complex phase transitions. Some of the phases are easily observable, such as the charge density wave (CDW) and the superconducting phase, while others are more challenging to identify and characterize.

View Article and Find Full Text PDF
Article Synopsis
  • This study explored how resistance training (RT) paired with cheese supplementation affected body composition, lipid profiles, muscle strength, and gut bacteria in untrained adult males over four weeks.
  • Participants were divided into four groups receiving varying amounts of cheese while completing a whole-body RT program three times a week, with their body parameters analyzed before and after the intervention.
  • Results indicated that cheese supplementation improved certain health markers, including higher HDL-C levels and lower body fat in the medium-dose group, while muscle strength showed no significant differences across groups, suggesting cheese could be beneficial alongside RT.
View Article and Find Full Text PDF

Artificial intelligence has been successfully applied in various fields, one of which is computer vision. In this study, a deep neural network (DNN) was adopted for Facial emotion recognition (FER). One of the objectives in this study is to identify the critical facial features on which the DNN model focuses for FER.

View Article and Find Full Text PDF

Anisotropy is a manifestation of lowered symmetry in material systems that have profound fundamental and technological implications. For van der Waals magnets, the two-dimensional (2D) nature greatly enhances the effect of in-plane anisotropy. However, electrical manipulation of such anisotropy as well as demonstration of possible applications remains elusive.

View Article and Find Full Text PDF

The realization of graphene gapped states with large on/off ratios over wide doping ranges remains challenging. Here, we investigate heterostructures based on Bernal-stacked bilayer graphene (BLG) atop few-layered CrOCl, exhibiting an over-1-GΩ-resistance insulating state in a widely accessible gate voltage range. The insulating state could be switched into a metallic state with an on/off ratio up to 10 by applying an in-plane electric field, heating, or gating.

View Article and Find Full Text PDF

Van der Waals magnets have emerged as a fertile ground for the exploration of highly tunable spin physics and spin-related technology. Two-dimensional (2D) magnons in van der Waals magnets are collective excitation of spins under strong confinement. Although considerable progress has been made in understanding 2D magnons, a crucial magnon device called the van der Waals magnon valve, in which the magnon signal can be completely and repeatedly turned on and off electrically, has yet to be realized.

View Article and Find Full Text PDF

Arabidopsis thaliana CONSTANS (CO) is an essential transcription factor that promotes flowering by activating the expression of the floral integrator FLOWERING LOCUS T (FT). A number of histone modification enzymes involved in the regulation of flowering have been identified, but the involvement of epigenetic mechanisms in the regulation of the core flowering regulator CO remains unclear. Previous studies have indicated that the transcription factors, FLOWERING BHLH1 (FBH1), FBH2, FBH3, and FBH4, function redundantly to activate the expression of CO.

View Article and Find Full Text PDF

Plant trichomes are large single cells that are organized in a regular pattern and play multiple biological functions. In Arabidopsis, trichome development is mainly governed by the core trichome initiation regulators, including the R2R3 type MYB transcript factor GLABRA 1 (GL1), bHLH transcript factors GLABRA 3/ENHANCER OF GLABRA 3 (GL3/EGL3), and the WD-40 repeat protein TRANSPARENT TESTA GLABRA 1 (TTG1), as well as the downstream trichome regulator GLABRA 2 (GL2). GL1, GL3/EGL3, and TTG1 can form a trimeric activation complex to activate GL2, which is required for the trichome initiation and maintenance during cell differentiation.

View Article and Find Full Text PDF

To explore the clinical manifestation, diagnosis, therapy, and mechanism of hemichorea associated with non-ketotic hyperglycemia (HC-NH) so as to enhance awareness and avoid misdiagnosis or missed diagnosis of the disease. A case of HC-NH was reported and reviewed in terms of the clinical features, diagnosis and treatment. Hemichorea associated with non-ketotic hyperglycemia is a rare complication of diabetes mellitus, which is commonly seen in elderly women with poorly-controlled diabetes.

View Article and Find Full Text PDF

Photosensing and energy harvesting based on exotic properties of quantum materials and new operation principles have great potential to break the fundamental performance limit of conventional photodetectors and solar cells. Weyl semimetals have demonstrated novel optoelectronic properties that promise potential applications in photodetection and energy harvesting arising from their gapless linear dispersion and Berry field enhanced nonlinear optical effect at the vicinity of Weyl nodes. In this work, we demonstrate robust photocurrent generation at the edge of T-WTe, a type-II Weyl semimetal, due to crystalline-symmetry breaking along certain crystal fracture directions and possibly enhanced by robust fermi-arc type surface states.

View Article and Find Full Text PDF

Topological semimetal (TSM) AuTeBr thin flakes have been studied by Raman spectroscopy and magneto-transport measurement. The angle-resolved polarized Raman spectrum of AuTeBr (bulk and thin flake) shows strong anisotropy. Together with high resolution transmission electron microscopy (TEM), we establish a non-destructive method to determine the crystallographic orientation of AuTeBr flakes.

View Article and Find Full Text PDF

Two-dimensional material-based ferroelectric field-effect transistors (2D-FeFETs) hold great promise in information storage and processing. However, an often-observed and hard-to-control anti-hysteresis response of 2D-FeFETs, for example, hysteretic switching of the resistance states of the devices opposite to that of the actual polarization of the ferroelectric dielectric, represents a major issue in the industrial applications of such devices. Here, we demonstrate a van der Waals buffer technique that eliminates anti-hysteresis in black phosphorus (BP) 2D-FeFETs and restores their intrinsic hysteretic behavior.

View Article and Find Full Text PDF

In , the circadian rhythm is associated with multiple important biological processes and maintained by multiple interconnected loops that generate robust rhythms. The circadian clock central loop is a negative feedback loop composed of the core circadian clock components. () is highly expressed in the evening and negatively regulates the expression of ()/ ().

View Article and Find Full Text PDF

Emerging two-dimensional (2D) semiconducting materials serve as promising alternatives for next-generation digital electronics and optoelectronics. However, large-scale 2D semiconductor films synthesized so far are typically polycrystalline with defective grain boundaries that could degrade their performance. Here, for the first time, wafer-size growth of a single-crystal BiOSe film, which is a novel air-stable 2D semiconductor with high mobility, was achieved on insulating perovskite oxide substrates [SrTiO, LaAlO, (La, Sr)(Al, Ta)O].

View Article and Find Full Text PDF

The experimental manifestation of topological effects in bulk materials is attracting enormous research interest. However, direct experimental evidence of the effective k-space monopole of the Weyl nodes has so far been lacking. Here, signatures of the singular topology of the type-II Weyl semimetal TaIrTe are revealed in the photoresponses, which are related to divergence of the Berry curvature.

View Article and Find Full Text PDF

The air instability of black phosphorus (BP) severely hinders the development of its electronic and optoelectronic applications. Although a lot of effort has been made to passivate it against degradation in ambient conditions, approaches to further manipulate the properties of passivated BP are still very limited. Herein, we report a simple and low-cost chemical method that can achieve BP passivation and property tailoring simultaneously.

View Article and Find Full Text PDF

In Arabidopsis, the circadian clock central oscillator genes are important cellular components to generate and maintain circadian rhythms. There is a negative feedback loop between the morning expressed CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)/LHY (LATE ELONGATED HYPOCOTYL) and evening expressed TOC1 (TIMING OF CAB EXPRESSION 1). CCA1 and LHY negatively regulate the expression of TOC1, while TOC1 also binds to the promoters of CCA1 and LHY to repress their expression.

View Article and Find Full Text PDF

Efficient modulation of carrier concentration is fundamentally important for tailoring the electronic and photoelectronic properties of semiconducting materials. Photoinduced doping is potentially a promising way to realize such a goal for atomically thin nanomaterials in a rapid and defect-free manner. However, the wide applications of photoinduced doping in nanomaterials are severely constrained by the low doping concentration and poor stability that can be reached.

View Article and Find Full Text PDF

The layered ternary compound TaIrTe is an important candidate to host the recently predicted type-II Weyl fermions. However, a direct and definitive proof of the absence of inversion symmetry in this material, a prerequisite for the existence of Weyl Fermions, has so far remained evasive. Herein, an unambiguous identification of the broken inversion symmetry in TaIrTe is established using angle-resolved polarized Raman spectroscopy.

View Article and Find Full Text PDF

Photodetectors based on Weyl semimetal promise extreme performance in terms of highly sensitive, broadband and self-powered operation owing to its extraordinary material properties. Layered Type-II Weyl semimetal that break Lorentz invariance can be further integrated with other two-dimensional materials to form van der Waals heterostructures and realize multiple functionalities inheriting the advantages of other two-dimensional materials. Herein, we report the realization of a broadband self-powered photodetector based on Type-II Weyl semimetal T -MoTe .

View Article and Find Full Text PDF

Atomically thin two-dimensional semiconducting materials integrated into van der Waals heterostructures have enabled architectures that hold great promise for next generation nanoelectronics. However, challenges still remain to enable their applications as compliant materials for integration in logic devices. Here, we devise a reverted stacking technique to intercalate a wrinkle-free boron nitride tunnel layer between MoS channel and source drain electrodes.

View Article and Find Full Text PDF