Silicon is beneficial to plant growth and helps plants to overcome abiotic and biotic stresses by preventing lodging (falling over) and increasing resistance to pests and diseases, as well as other stresses. Silicon is essential for high and sustainable production of rice, but the molecular mechanism responsible for the uptake of silicon is unknown. Here we describe the Low silicon rice 1 (Lsi1) gene, which controls silicon accumulation in rice, a typical silicon-accumulating plant.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
January 2006
Nitric oxide (NO) may participate in the ozone layer depletion and forming of nitric acid. Abiotic and biological mechanisms of NO removal from waste gases were studied in a biotrickling filter. The abiotic NO removal rate in the biotrickling filter was estimated by a review of the literature.
View Article and Find Full Text PDFAim: To explore the relationship between the level of proinsulin with cardiovascular risk factors and sleep snoring.
Methods: Based on the random stratified sampling principle, 1 193 Chinese residents in Pizhou City, Jiangsu Province (530 males and 663 females, aged 35-59 years with an average age of 46.69 years) were recruited.
Thlaspi caerulescens (Ganges ecotype) is a known Cd hyperaccumulator, however, the ligands which coordinate to Cd ions in the leaves have not been identified. In the present study, the chemical form of Cd was investigated by using 113Cd-nuclear magnetic resonance (NMR) spectroscopy. Plants were grown hydroponically with a highly enriched 113Cd stable isotope.
View Article and Find Full Text PDFRice (Oryza sativa L.) is a highly Al-resistant species among small grain crops, but the mechanism responsible for the high Al resistance has not been elucidated. In this study, rice mutants sensitive to Al were isolated from M(3) lines derived from an Al-resistant cultivar, Koshihikari, irradiated with gamma-rays.
View Article and Find Full Text PDFThe accumulation of silicon (Si) in the shoots varies considerably among plant species, but the mechanism responsible for this variation is poorly understood. The uptake system of Si was investigated in terms of the radial transport from the external solution to the root cortical cells and the release of Si from the cortical cells to the xylem in rice, cucumber, and tomato, which differ greatly in shoot Si concentration. Symplasmic solutions of the root tips were extracted by centrifugation.
View Article and Find Full Text PDFPlant Cell Physiol
February 2005
Rice (Oryza sativa L.) is a typical silicon (Si)-accumulating plant, but the mechanism responsible for the translocation from the root to the shoot is poorly understood. In this study, the form of Si in xylem sap was identified by (29)Si-nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFAim: To investigate the association between true insulin and proinsulin and clustering of cardiovascular risk factors.
Methods: Based on the random stratified sampling principles, 1196 Chinese people (533 males and 663 females, aged 35-59 years with an average age of 46.69 years) were recruited.
Thlaspi caerulescens (Ganges ecotype) is able to accumulate large concentrations of cadmium (Cd) and zinc (Zn) in the leaves without showing any toxicity, suggesting a strong internal detoxification. The distribution of Cd and Zn in the leaves was investigated in the present study. Although the Cd and Zn concentrations in the epidermal tissues were 2-fold higher than those of mesophyll tissues, 65-70% of total leaf Cd and Zn were distributed in the mesophyll tissues, suggesting that mesophyll is a major storage site of the two metals in the leaves.
View Article and Find Full Text PDFRice (Oryza sativa L. cv Oochikara) is a typical silicon-accumulating plant, but the mechanism responsible for the high silicon uptake by the roots is poorly understood. We characterized the silicon uptake system in rice roots by using a low-silicon rice mutant (lsi1) and wild-type rice.
View Article and Find Full Text PDFVitamin D 1alpha-hydroxylase (1alpha(OH)ase), which converts the circulating prohormone 25-hydroxyvitamin-D(3) (25(OH)D(3)) to the active 1alpha-25-dihydroxyvitamin-D(3) (1,25(OH)(2)D(3)), is present in normal prostatic epithelium. However, prostate cancer cells, both primary cultured cells and cell lines, have greatly decreased activity of 1alpha(OH)ase and are therefore resistant to the tumor suppressor activity of circulating 25(OH)D(3). We quantitated 1alpha(OH)ase mRNA and protein levels to investigate mechanism(s) responsible for decreased 1alpha(OH)ase enzymatic activity in prostate cancer.
View Article and Find Full Text PDFPhytotoxicity of aluminum is characterized by a rapid inhibition of root elongation at micromolar concentrations, however, the mechanisms primarily responsible for this response are not well understood. We investigated the effect of Al on the viscosity and elasticity parameters of root cell wall by a creep-extension analysis in two cultivars of wheat (Triticum aestivum L.) differing in Al resistance.
View Article and Find Full Text PDFAluminium (Al) toxicity is an important limitation to barley (Hordeum vulgare L.) on acid soil. Al-resistant cultivars of barley detoxify Al externally by secreting citrate from the roots.
View Article and Find Full Text PDFBuckwheat (Fagopyrum esculentum Moench. cv. Jianxi) is known as an Al-accumulating plant.
View Article and Find Full Text PDFJ Inorg Biochem
September 2003
Aluminum (Al) is highly toxic to plant growth. The toxicity is characterized by rapid inhibition of root elongation. However, some plant species and cultivars have evolved some mechanisms for detoxifying Al both internally and externally.
View Article and Find Full Text PDF• Rice (Oryza sativa) is a typical Si-accumulating plant and it has been suggested that it has a specific uptake system for silicic acid in the roots. • Here, we characterized this specific system in rice roots. The ability of rice roots to take up Si was much higher than that of other gramineous species.
View Article and Find Full Text PDFThe secretion of organic acid anions from roots has been identified as a mechanism of resistance to Al. However, the process leading to the secretion of organic acid anions is poorly understood. The effect of Al on organic acid metabolism was investigated in two lines of triticale (xTriticosecale Wittmark) differing in Al-induced secretion of malate and citrate and in Al resistance.
View Article and Find Full Text PDFWhile barley ( Hordeum vulgare L.) is the most sensitive species to Al toxicity among small-grain crops, variation in Al resistance between cultivars does exist. We examined the mechanism responsible for differential Al resistance in 21 barley varieties.
View Article and Find Full Text PDFRice (Oryza sativa) accumulates silicon (Si) in the tops to levels up to 10.0% of shoot dry weight, but the mechanism responsible for high Si uptake by rice roots is not understood. We isolated a rice mutant (GR1) that is defective in active Si uptake by screening M(2) seeds (64,000) of rice cv Oochikara that were treated with 10(-3) M sodium azide for 6 h at 25 degrees C.
View Article and Find Full Text PDFBuckwheat (Fagopyrum esculentum Moench.) is an Al-accumulating plant, but the internal mechanism(s) of detoxification of Al is not fully understood. We investigated the subcellular localization of Al in the leaves of this plant (cv.
View Article and Find Full Text PDFRice (Oryza sativa L.) shows the highest tolerance to Al toxicity among small-grain cereal crops, however, the mechanisms and genetics responsible for its high Al tolerance are not yet well understood. We investigated the response of rice to Al stress using the japonica variety Koshihikari in comparison to the indica variety Kasalath.
View Article and Find Full Text PDFAlthough Al-induced iron chlorosis has been observed in many plants, the mechanisms responsible for this phenomenon are yet to be understood. We investigated the effect of Al on iron acquisition in a Strategy II plant, wheat (Triticum aestivum L.) using both Al-tolerant (Atlas 66) and -sensitive (Scout 66) cultivars.
View Article and Find Full Text PDF