Publications by authors named "Jian-Chao Zong"

Nearly 100 cases of lethal acute hemorrhagic disease in young Asian elephants have been reported worldwide. All tested cases contained high levels of elephant endotheliotropic herpesvirus (EEHV) DNA in pathological blood or tissue samples. Seven known major types of EEHVs have been partially characterized and shown to all belong to the novel Proboscivirus genus.

View Article and Find Full Text PDF

Unlabelled: More than 80 cases of lethal hemorrhagic disease associated with elephant endotheliotropic herpesviruses (EEHVs) have been identified in young Asian elephants worldwide. Diagnostic PCR tests detected six types of EEHV in blood of elephants with acute disease, although EEHV1A is the predominant pathogenic type. Previously, the presence of herpesvirus virions within benign lung and skin nodules from healthy African elephants led to suggestions that African elephants may be the source of EEHV disease in Asian elephants.

View Article and Find Full Text PDF

Unlabelled: The genomes of three types of novel endotheliotropic herpesviruses (elephant endotheliotropic herpesvirus 1A [EEHV1A], EEHV1B, and EEHV2) associated with lethal hemorrhagic disease in Asian elephants have been previously well characterized and assigned to a new Proboscivirus genus. Here we have generated 112 kb of DNA sequence data from segments of four more types of EEHV by direct targeted PCR from blood samples or necropsy tissue samples from six viremic elephants. Comparative phylogenetic analysis of nearly 30 protein-encoding genes of EEHV5 and EEHV6 show that they diverge uniformly by nearly 20% from their closest relatives, EEHV2 and EEHV1A, respectively, and are likely to have similar overall gene content and genome organization.

View Article and Find Full Text PDF

Unlabelled: A family of novel endotheliotropic herpesviruses (EEHVs) assigned to the genus Proboscivirus have been identified as the cause of fatal hemorrhagic disease in 70 young Asian elephants worldwide. Although EEHV cannot be grown in cell culture, we have determined a total of 378 kb of viral genomic DNA sequence directly from clinical tissue samples from six lethal cases and two survivors. Overall, the data obtained encompass 57 genes, including orthologues of 32 core genes common to all herpesviruses, 14 genes found in some other herpesviruses, plus 10 novel genes, including a single large putative transcriptional regulatory protein (ORF-L).

View Article and Find Full Text PDF

Elephant endotheliotropic herpesvirus 1A is a member of the Proboscivirus genus and is a major cause of fatal hemorrhagic disease in endangered juvenile Asian elephants worldwide. Here, we report the first complete genome sequence from this genus, obtained directly from necropsy DNA, in which 60 of the 115 predicted genes are not found in any known herpesvirus.

View Article and Find Full Text PDF

Up to 65% of deaths of young Asian elephants (Elephas maximus) between 3 mo and 15 yr of age in Europe and North America over the past 20 yr have been attributed to hemorrhagic disease associated with a novel DNA virus called elephant endotheliotropic herpesvirus (EEHV). To evaluate the potential role of EEHV in suspected cases of a similar lethal acute hemorrhagic disease occurring in southern India, we studied pathologic tissue samples collected from field necropsies. Nine cases among both orphaned camp and wild Asian elephants were identified by diagnostic PCR.

View Article and Find Full Text PDF

Elephant endotheliotropic herpesviruses (EEHVs) can cause acute hemorrhagic disease with high mortality rates in Asian elephants (Elephas maximus). Recently, a new EEHV type known as EEHV5 has been described, but its prevalence and clinical significance remain unknown. In this report, an outbreak of EEHV5 infection in a herd of captive Asian elephants in a zoo was characterized.

View Article and Find Full Text PDF

Elephant endotheliotropic herpesviruses (EEHVs) can cause fatal hemorrhagic disease in juvenile Asian elephants (Elphas maximus); however, sporadic shedding of virus in trunk washes collected from healthy elephants also has been detected. Data regarding the relationship of viral loads in blood compared with trunk washes are lacking, and questions about whether elephants can undergo multiple infections with EEHVs have not been addressed previously. Real-time quantitative polymerase chain reaction was used to determine the kinetics of EEHV1 loads, and genotypic analysis was performed on EEHV1 DNA detected in various fluid samples obtained from five Asian elephants that survived detectable EEHV1 DNAemia on at least two separate occasions.

View Article and Find Full Text PDF

Objective: To investigate the pathogenesis and transmission of elephant endotheliotropic herpesvirus (EEHV1) by analyzing various elephant fluid samples with a novel EEHV1-specific real-time PCR assay.

Animals: 5 apparently healthy captive Asian elephants (Elephas maximus) from the same herd.

Procedures: A real-time PCR assay was developed that specifically detects EEHV1.

View Article and Find Full Text PDF

Systemic infections with elephant endotheliotropic herpesviruses (EEHV) cause a rapid onset acute hemorrhagic disease with an 85% mortality rate. More than 60 cases have been confirmed worldwide occurring predominantly in juvenile Asian elephants. Originally, three virus types EEHV1A, EEHV1B and EEHV2 were identified, all members of the Proboscivirus genus within the Betaherpesvirinae.

View Article and Find Full Text PDF

Ever since the original identification of fragments of KSHV DNA in Kaposi's sarcoma (KS) tissue by Chang et al. in 1994, PCR has been used successfully and extensively to detect the virus in clinical samples from the accepted etiological diseases of KS, PEL and MCD. However, a number of other clinical and epidemiological studies claiming evidence for KSHV in multiple myeloma or sarcoid and more recently in primary pulmonary hypertension, as well as claims about the biological significance of DNA sequence polymorphisms based just on small ORF26 PCR DNA fragments have not been convincing.

View Article and Find Full Text PDF

Background: Small 233-bp or 330-bp DNA fragments of the ORF26 gene of human Kaposi's sarcoma herpesvirus (KSHV) have been used extensively to identify KSHV by PCR in clinical samples; to associate KSHV with novel diseases and to correlate KSHV strain differences with pathogenicity.

Objectives: We evaluated the nature, extent and source of nucleotide sequence variability among a large and diverse set of known KSHV-positive DNA samples.

Study Design: Direct DNA PCR sequencing was carried out on 136 distinct Kaposi's sarcoma and primary effusion lymphoma-related samples from different geographic locations.

View Article and Find Full Text PDF

Most congenital human cytomegalovirus (HCMV) infections are asymptomatic, but some lead to severe disease. We hypothesized that differences in disease manifestations may be partially explained by differences in viral strains. We recently reported an association between unique long (UL) 144 gene polymorphisms and clinical disease.

View Article and Find Full Text PDF

Objective: The aim of this study was to test the relationship between Kaposi's sarcoma-associated herpesvirus (KSHV) phylogeny and host ethnicity at the within-country scale.

Methods: KSHV genomic DNA samples were isolated from 31 patients across eleven Ugandan ethnic groups. Amino acid sequences of the ORF-K1 gene were used to construct a neighbor-joining phylogenetic tree.

View Article and Find Full Text PDF

Human CMV (hCMV) encodes several captured chemokine ligand and chemokine receptor genes that may play a role in immune evasion. The adjacent viral alpha-chemokine genes UL146 and UL147 appear to have duplicated subsequent to a recent gene capture event. Sequence data from multiple hCMV isolates suggest accelerated protein evolution in one of the paralogues, UL146.

View Article and Find Full Text PDF

Some congenital cytomegalovirus (CMV) infections lead to neonatal disease, whereas others have no associated sequelae. To explore a possible role for viral genes as determinants of virulence, portions of the UL144 tumor necrosis factor (TNF)-alpha-like receptor gene, the US28 beta-chemokine receptor gene, and the UL55 envelope glycoprotein B gene from 33 patients with congenital CMV infection were sequenced. Three major UL144 subtypes (A, B, and C) and 2 recombinants (A/C and A/B) were detected.

View Article and Find Full Text PDF

The ORF74 or vGCR gene encoded by Kaposi's sarcoma-associated herpesvirus (KSHV; also called human herpesvirus 8) has properties of a ligand-independent membrane receptor signaling protein with angiogenic properties that is predicted to play a key role in the biology of the virus. We have examined the expression of vGCR mRNA and protein in primary effusion lymphoma (PEL) cell lines, PEL and multicentric Castleman's disease (MCD) tumors, Kaposi's sarcoma lesions and infected endothelial cell cultures. The vGCR gene proved to be expressed in PEL cell lines as a large spliced bicistronic mRNA of 3.

View Article and Find Full Text PDF