Publications by authors named "Jian-Bin Ye"

Background: Rectal Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) infections among men who have sex with men (MSM) are escalating public health concerns. This study aimed to explore (1) the reliability of self-reported sexual positioning as an indicator for rectal CT and NG screening, and (2) factors associated with rectal CT and NG infections in Shenzhen, China.

Methods: A cross-sectional study was conducted in 2 settings in Shenzhen, China, from April 1, 2021, to March 31, 2022.

View Article and Find Full Text PDF

Background: The notch signal pathway is important in the development of both tumor-associated macrophages (TAMs) and stomach cancer, but how Notch signaling affects TAMs in stomach cancer is barely understood.

Methods: The expressions of Notch1, Notch2, Notch3, Notch4, hes family bHLH transcription factor 1 (Hes1), and delta-like canonical Notch ligand 3 (DLL3) were detected by Western blot and the expressions of interleukin (IL)-10, IL-12, and IL1-β were detected using enzyme-linked immunosorbent assay after the co-culture of macrophages and stomach-cancer cells. The proliferation and migration of cancer cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and scratch assay, respectively, and the cell cycle was detected using Annexin V/propidium iodide assay.

View Article and Find Full Text PDF

A bioassay-guided fractionation of extract from Gluconobacter oxydans fermentation broth afforded Compound 1, which was identified as pyrroloquinoline quinone (PQQ) by spectroscopic methods. PQQ has been shown to enhance the superoxide anion-scavenging capacity significantly for Cu/Zn-SOD. To illustrate the mechanism, the interaction between PQQ and Cu/Zn-SOD was investigated.

View Article and Find Full Text PDF

A membrane-bound pyrroloquinoline quinine (PQQ)-dependent D-sorbitol dehydrogenase (mSLDH) in Gluconobacter oxydans participates in the oxidation of D-sorbitol to L-sorbose by transferring electrons to ubiquinone which links to the respiratory chain. To elucidate the kinetic mechanism, the enzyme purified was subjected to two-substrate steady-state kinetic analysis, product and substrate inhibition studies. These kinetic data indicate that the catalytic reaction follows an ordered Bi Bi mechanism, where the substrates bind to the enzyme in a defined order (first ubiquinone followed by D-sorbitol), while products are released in sequence (first L-sorbose followed by ubiquinol).

View Article and Find Full Text PDF