Publications by authors named "Jian-Bin Xu"

In recent years, adhesive thermal interface materials have attracted much attention because of their reliable adhesion properties on most substrates, preventing moisture, vibration impact, or chemical corrosion damage to components and equipment, as well as solving the heat dissipation problem. However, thermal interface materials have a huge contradiction between strong adhesion and high thermal conductivity. Here, we report a polymer-based thermal interface material consisting of polydimethylsiloxane/spherical aluminum fillers, which possesses both adhesion properties (adhesion strength of 3.

View Article and Find Full Text PDF

The swift progression of high-density chiplet packaging, propelled by the artificial intelligence revolution, has precipitated a critical need for high-performance chip-scale thermal interface materials (TIMs). The elevated thermal resistance, limited interfacial adhesion, and mechanical flexibility intrinsic to silicone systems present a substantial challenge in meeting reliability standards amidst chip warpage. This particular matter underscores a significant performance bottleneck within existing high-end TIMs.

View Article and Find Full Text PDF

Molecular diodes are of considerable interest for the increasing technical demands of device miniaturization. However, the molecular diode performance remains contact-limited, which represents a major challenge for the advancement of rectification ratio and conductance. Here, it is demonstrated that high-quality ultrathin organic semiconductors can be grown on several classes of metal substrates via solution-shearing epitaxy, with a well-controlled number of layers and monolayer single crystal over 1 mm.

View Article and Find Full Text PDF

Attaining elevated thermal conductivity in organic materials stands as a coveted objective, particularly within electronic packaging, thermal interface materials, and organic matrix heat exchangers. These applications have reignited interest in researching thermally conductive organic materials. The understanding of thermal transport mechanisms in these organic materials is currently constrained.

View Article and Find Full Text PDF

As the features of electronics are miniaturized, the need for interfacial thermal coupling layers to enhance their thermal transfer efficiency and improve device performance becomes critical. Organic conjugated small molecules possess a unique combination of periodic crystal structures and conjugated units with π electrons, resulting in notable thermal conductivities and molecular structure orientation that facilitates directed heat transfer. Nevertheless, there is a noticeable gap in literatures regarding the thermal properties of organic conjugated small molecules and their potential applications in nanoscale thermal management.

View Article and Find Full Text PDF

Porous skeletons play a crucial role in various applications. Their fundamental significance stems from their remarkable surface area and capacity to enhance mass adsorption and transport. Freeze-casting is a commonly utilized methodology for the production of porous skeletons featuring vertically aligned channels.

View Article and Find Full Text PDF

Two-dimensional (2D) materials have been considered promising candidates for future low power-dissipation and reconfigurable integrated circuit applications. However, 2D transistors with intrinsic ambipolar transport polarity are usually affected by large off-state leakage currents and small on/off ratios. Here, we report the realization of a reconfigurable Schottky junction field-effect transistor (SJFET) in an asymmetric van der Waals contact geometry, showing a balanced and switchable n- and p-unipolarity with the I on/off ratio kept >10.

View Article and Find Full Text PDF

Organic field-effect transistors (OFETs) are of interest in unconventional form of electronics. However, high-performance OFETs are currently contact-limited, which represent a major challenge toward operation in the gigahertz regime. Here, we realize ultralow total contact resistance (R) down to 14.

View Article and Find Full Text PDF

Purpose: Recent studies have shown that Ankyrin Repeat Domain 55 () gene polymorphism is a risk factor for multiple autoimmune diseases, but its association with autoimmune thyroid diseases (AITDs) has not been reported. The purpose of this study was to investigate the potential relationship between polymorphism of the gene and AITDs.

Methods: For this study, we enrolled 2050 subjects, consisting of 1220 patients with AITD and 830 healthy subjects.

View Article and Find Full Text PDF

2D molybdenum ditelluride (MoTe ) with polymorphism is a promising candidate to developing phase-change memory, high-performance transistors and spintronic devices. The phase-transition-assisted chemical vapor deposition (CVD) process has been used to prepare large-scale 2H-MoTe with large grain size and low density of grain boundary. However, because of the lack of precise control of the growth condition, some defects including the amorphous regions and grain boundaries in 2H-MoTe are hardly avoidable.

View Article and Find Full Text PDF

aggregates are widely used in studies of light-matter interaction and organic optoelectronic devices. Although -aggregate films can be fabricated on salt by epitaxial growth method, the size is limited to hundreds of nanometer. In this work, with hexagonal boron nitride (h-BN) as a substrate, highly crystalline -aggregate ultrathin films of ,'-ditridecylperylene 3,4,9,10-tetracarboxylic diimide (PTCDI-C) are achieved by physical vapor transport (PVT) method.

View Article and Find Full Text PDF

Acoustic metamaterials with artificial microstructures are attractive to realize intriguing functions, including efficient waveguiding, which requires large impedance mismatches to realize total side reflection with negligible transmission and absorption. While large impedance mismatch can be readily realized in an air environment, acoustic waveguiding in an underwater environment remains elusive due to insufficient impedance mismatch of state-of-the-art metamaterials. Here, a superhydrophobic acoustic metasurface of microstructured poly(vinylidene fluoride) membrane, referred to as a "meta-skin" insulator, which is able to confine acoustic waves in an all-angle and wide spectrum range due to tremendous impedance mismatch at stable air/water interfaces, viz.

View Article and Find Full Text PDF

Micro- and nano-optomechanics has attracted broad interest for applications of mechanical sensing and coherent signal processing. For nonpiezoelectric materials such as silicon or silicon nitride, electrocapacitive effects with metals patterned on mechanical structures are usually adopted to actuate the mechanical motion of the micro- or nanomechanical devices. However, the metals have deleterious effects on the mechanical structures because they add an additional weight and also introduce considerable mechanical losses.

View Article and Find Full Text PDF

Conventional polymer composites normally suffer from undesired thermal conductivity enhancement which has hampered the development of modern electronics as they face a stricter heat dissipating requirement. It is still challenging to achieve satisfactory thermal conductivity enhancement with reasonable mechanical properties. Herein, we present a three-dimensional (3D), lightweight, and mechanically strong boron nitride (BN)-silicon carbide (SiC) skeleton with aligned thermal pathways via the combination of ice-templated assembly and high-temperature sintering.

View Article and Find Full Text PDF

Excitons in two-dimensional (2D) materials are tightly bound and exhibit rich physics. So far, the optical excitations in 2D semiconductors are dominated by Wannier-Mott excitons, but molecular systems can host Frenkel excitons (FE) with unique properties. Here, we report a strong optical response in a class of monolayer molecular J-aggregates.

View Article and Find Full Text PDF

Monolayer molybdenum disulfide (MoS) is considered to be a promising candidate for field-effect transistors and photodetectors due to its direct bandgap and atomically thin properties. However, the MoS devices are impeded by the intrinsic surface defects and environmental adsorption such as HO and O. Here, we demonstrated a highly ordered, ultrathin (<5 nm) and scalable N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13) passivation layer that can be epitaxially grown on MoS.

View Article and Find Full Text PDF

Flexible thermoelectric materials that can harvest waste heat energy have attracted great attention because of the rapid progress of flexible electronics. AgTe nanowires (AgTe NWs) are considered as promising thermoelectric materials to fabricate flexible thermoelectric film and device because of their high Seebeck coefficient, but poor contact between the AgTe NWs results in low electrical conductivity. Generally, hot or cold pressing can increase the electrical conductivity between the AgTe NWs.

View Article and Find Full Text PDF

Background: Cripto-1 (CR-1) has been reported to be involved in the development of several human cancers. The potential role of CR-1 in clear cell renal cell carcinoma (ccRCC) is still not clear.

Methods: CR-1 expression was evaluated in ccRCC tissues by Real-time quantitative PCR, Western blot and immunohistochemistry.

View Article and Find Full Text PDF

Boron nitride nanotubes (BNNTs), structural analogues of carbon nanotubes, have attracted significant attention due to their superb thermal conductivity, wide bandgap, excellent hydrogen storage capacity, and thermal and chemical stability. Despite considerable progress in the preparation and surface functionalization of BNNTs, it remains a challenge to assemble one-dimensional BNNTs into three-dimensional (3D) architectures (such as aerogels) for practical applications. Here, we report a highly compressive BNNT aerogel reinforced with reduced graphene oxide (rGO) fabricated using a freeze-drying method.

View Article and Find Full Text PDF

Terahertz modulators with high tunability of both intensity and phase are essential for effective control of electromagnetic properties. Due to the underlying physics behind existing approaches there is still a lack of broadband devices able to achieve deep modulation. Here, we demonstrate the effect of tunable Brewster angle controlled by graphene, and develop a highly-tunable solid-state graphene/quartz modulator based on this mechanism.

View Article and Find Full Text PDF

Plasmon-free surface enhanced Raman scattering (SERS) based on the chemical mechanism (CM) is drawing great attention due to its capability for controllable molecular detection. However, in comparison to the conventional noble-metal-based SERS technique driven by plasmonic electromagnetic mechanism (EM), the low sensitivity in the CM-based SERS is the dominant barrier toward its practical applications. Herein, we demonstrate the 1T' transition metal telluride atomic layers (WTe and MoTe) as ultrasensitive platforms for CM-based SERS.

View Article and Find Full Text PDF

Solution-processed metal oxide thin-film transistors (TFTs) are considered as one of the most promising transistor technologies for future large-area flexible electronics. This work surveys the recent advances in solution-processed metal oxide TFTs, including n-type oxide semiconductors, oxide dielectrics, and p-type oxide semiconductors. We first deliver a review on the history and present status of metal oxide TFTs.

View Article and Find Full Text PDF

Efficient heat removal via thermal management materials has become one of the most critical challenges in the development of modern microelectronic devices. However, previously reported polymer composites exhibit limited enhancement of thermal conductivity, even when highly loaded with thermally conductive fillers, because of the lack of efficient heat transfer pathways. Herein, we report vertically aligned and interconnected SiC nanowire (SiCNW) networks as efficient fillers for polymer composites, achieving significantly enhanced thermal conductivity.

View Article and Find Full Text PDF

Directional optical nanoantennas are often realized by nanostructured systems with ingenious or complex designs. Herein we report on the realization of directional scattering of visible light from a simple configuration made of single Ag nanorods supported on Si substrates, where the incident light can be routed toward the two flanks of each nanorod. Such an intriguing far-field scattering behavior, which has not been investigated so far, is proved to result from the near-field coupling between high-aspect-ratio Ag nanorods and high-refractive-index Si substrates.

View Article and Find Full Text PDF

Owing to the growing heat removal issue in modern electronic devices, electrically insulating polymer composites with high thermal conductivity have drawn much attention during the past decade. However, the conventional method to improve through-plane thermal conductivity of these polymer composites usually yields an undesired value (below 3.0 Wm K ).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionth3hgo5l0oc4rlu5l5ilh1d2lbfrm9o3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once