Publications by authors named "Jian Xin Wang"

Cutting-edge techniques utilizing continuous films made from pure, novel semiconductive materials offer promising pathways to achieve high performance and cost-effectiveness for X-ray detection. Semiconductive metal-organic framework (MOF) glass films are known for their remarkably smooth surface morphology, straightforward synthesis, and capability for large-area fabrication, presenting a new direction for high-performance X-ray detectors. Here, a novel material centered on MOF glasses for highly uniform glass film fabrication customized for X-ray detection is introduced.

View Article and Find Full Text PDF

Novel scintillation materials have played an indispensable role in the recent remarkable progress witnessed for X-ray imaging technology. Herein, a high-performance X-ray scintillation screen was developed based on a highly efficient hybrid system combining inorganic ZnS (Ag) with thermally activated delayed fluorescence (TADF) scintillator materials via an interfacial energy transfer (EnT) mechanism. ZnS (Ag) has a high X-ray absorption capacity and functions as the initial layer for efficiently converting high-energy X-ray photons into low-energy visible light (acting as a sensitizer) while also serving as an energy donor.

View Article and Find Full Text PDF

Here we report the synthesis and crystallization of a -COOH-capped -heterocyclic carbene (NHC)-protected Au cluster. The single-crystal structure of the -COOH-capped NHC-Au cluster reveals a classic icosahedral core with one Au atom in its center. The icosahedral core is surrounded by five NHC ligands with pseudo C5 symmetry and exposed carboxyls in a pentagonal antiprism fashion.

View Article and Find Full Text PDF

As a ubiquitous tire antioxidant, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylene- diamine (6PPD) exists widely in various environmental media and has been detected at high levels in the environment. However, the effects of 6PPD on plants are still poorly understood. In this study, a hydroponic experiment was carried out to investigate the response of white clover (Trifolium repens L.

View Article and Find Full Text PDF

Here, we report the first utilization of covalent organic frameworks (COFs) in optical wireless communication (OWC) applications. In the solid form, aggregation-induced emission (AIE) luminogen often shows promising emissive characteristics that augment radiative decays and improve fluorescence. We have synthesized an through the Knoevenagel condensation reaction by taking advantage of the ability to carefully design and alter the COF structure by integrating an AIE luminogen with linear building blocks.

View Article and Find Full Text PDF

Objectives: To analyze the methodology, evidence, recommendations, quality, and implementation of traditional Chinese patent medicine (CPM) guidelines.

Methods: We retrieved clinical application guidelines of CPM published from 2019 to 2022. Independent screening and data extraction were performed by two evaluators.

View Article and Find Full Text PDF

A large number of pesticides have been widely manufactured and applied, and are released into the environment with negative impact on human health. Pesticides are largely used in densely populated urban environments, in green zones, along roads and on private properties. In order to characterize the potential exposure related health effects of pesticide and their occurrence in the urban environment, 222 pesticides were screened and quantified in 228 road dust and 156 green-belt soil samples in autumn and spring from Harbin, a megacity in China, using GC-MS/MS base quantitative trace analysis.

View Article and Find Full Text PDF

Although exogenous calcitonin gene‑related peptide (CGRP) protects against hyperoxia‑induced lung injury (HILI), the underlying mechanisms remain unclear. The present study attempted to elucidate the molecular mechanism by which CGRP protects against hyperoxia‑induced alveolar cell injury. Human alveolar A549 cells were treated with 95% hyperoxia to establish a hyperoxic cell injury model.

View Article and Find Full Text PDF

Huangqi Guizhi Wuwu Decoction (HQGZWWD) has shown promising potential in treating various cardiovascular diseases. This study aimed to elucidate the molecular basis and therapeutic role of HQGZWWD in the treatment of doxorubicin (DOX)-induced myocardial injury. The HPLC fingerprint of HQGZWWD was used to analyze the active components.

View Article and Find Full Text PDF

Traditional Chinese medicine(TCM) syndrome-based efficacy is an evaluation index which is unique to TCM and can reflect the advantages of TCM. The development of the methods and measurement tools for evaluating TCM syndrome-based efficacy can provide objective and quantitative evidence for the clinical efficacy evaluation of TCM and the development of new Chinese medicine preparations, being the exploration direction of innovative methods and technologies for evaluating TCM efficacy. The conventional evaluation methods are subjective and limited to the mitigation of symptoms and the improvement of physical signs, which make it difficult to form a unified evaluation standard.

View Article and Find Full Text PDF

Convenient transportation facilities not only bring the higher standard of living to big cities, but also bring some environmental pollution problems. In order to understand the presence and sources of methylated polycyclic aromatic hydrocarbons (Me-PAHs) in environmental samples and their association with total organic carbon (TOC), 49 Me-PAHs were analyzed in road dust, green belt soil and parking lot dust samples in Harbin. The results showed that the ranges of the total Me-PAHs (ΣMe-PAHs) content in road dust were 221-5826 ng/g in autumn and 697-7302 ng/g in spring, and those in green belt soil were 170-2509 ng/g and 155-9215 ng/g in autumn and spring, respectively.

View Article and Find Full Text PDF

Aniline antioxidants (ANs) are widely used as industrial chemicals in products composed of rubber. ANs originate mainly from vehicles, where tire wear particles end up in dust and soil after being deposited on roads. Nowadays, limited information is available on the fate and seasonal variation of ANs in the road environment.

View Article and Find Full Text PDF

Intermolecular charge transfer (CT) complexes have emerged as versatile platforms with customizable optical properties that play a pivotal role in achieving tunable photoresponsive materials. In this study, we introduce an innovative approach for enhancing the modulation bandwidth and net data rates in optical wireless communications (OWCs) by manipulating combinations of monomeric molecules within intermolecular CT complexes. Concurrently, we extensively investigate the intermolecular charge transfer mechanism through diverse steady-state and ultrafast time-resolved spectral techniques in the mid-infrared range complemented by theoretical calculations using density functional theory.

View Article and Find Full Text PDF

The exacerbation of inherent light scattering with increasing scintillator thickness poses a major challenge for balancing the thickness-dependent spatial resolution and scintillation brightness in X-ray imaging scintillators. Herein, a thick pixelated needle-like array scintillator capable of micrometer resolution is fabricated via waveguide structure engineering. Specifically, this involves integrating a straightforward low-temperature melting process of manganese halide with an aluminum-clad capillary template.

View Article and Find Full Text PDF

With the advancement of industrial economies, incidents involving spills of petroleum products have become increasingly frequent. The resulting pollutants pose significant threats to air, water, soil, plant and animal survival, as well as human health. In this study, microcrystalline cellulose served as the matrix and benzoyl peroxide (BPO) as the initiator, while butyl acrylate (BA) and ,'-methylene bisacrylamide (MBA) were employed as graft monomers.

View Article and Find Full Text PDF

The pursuit of developing sensors, characterized by their fluorescence-intensity enhancement or "turn-on" behavior, for accurately detecting noxious small molecules, such as amines, at minimal levels remains a significant challenge. Metal-organic frameworks (MOFs) have emerged as promising candidates as sensors as a result of their diverse structural features and tunable properties. This study introduces the rational synthesis of a new highly coordinated (6,12)-connected rare earth (RE) -MOF-3, by combining the nonanuclear 12-connected hexagonal prismatic building units, [RE(μ-O)(μ-X)(OH)(HO)(OC-)], with the 6-connected rigid trigonal prismatic extended triptycene ligand.

View Article and Find Full Text PDF

The last decade has witnessed considerable progress in underwater wireless optical communication in complex environments, particularly in exploring the deep sea. However, it is difficult to maintain a precise point-to-point reception at all times due to severe turbulence in actual situations. To facilitate efficient data transmission, the color-conversion technique offers a paradigm shift in large-area and omnidirectional light detection, which can effectively alleviate the étendue limit by decoupling the field of view and optical gain.

View Article and Find Full Text PDF

To obtain a comprehensive understanding about that occurrence, sources, and effects on human health of polycyclic aromatic hydrocarbons (PAHs) in road environmental samples from Harbin, concentrations of 32 PAHs in road dust, green belt soil, and parking lot dust samples were quantified. The total PAH concentrations ranged from 0.95 to 40.

View Article and Find Full Text PDF

Background: To develop a radiomics model based on chest computed tomography (CT) for the prediction of a pathological complete response (pCR) after neoadjuvant or conversion chemoimmunotherapy (CIT) in patients with non-small cell lung cancer (NSCLC).

Methods: Patients with stage IB-III NSCLC who received neoadjuvant or conversion CIT between September 2019 and July 2021 at Hunan Cancer Hospital, Xiangya Hospital, and Union Hospital were retrospectively collected. The least absolute shrinkage and selection operator (LASSO) were used to screen features.

View Article and Find Full Text PDF

X-ray imaging scintillators play a crucial role in medical examinations and safety inspections, making them an essential technology in our modern lives. However, commercially available high-performance scintillators are fabricated exclusively from ceramic materials that require harsh preparation conditions and are costly to produce. Organic scintillators have emerged as a promising alternative due to their transparency and ease of fabrication at a low cost.

View Article and Find Full Text PDF

Tailoring the electronic structure of perovskite materials on ultrafast timescales is expected to shed light on optimizing optoelectronic applications. However, the transient bandgap renormalization observed upon photoexcitation is commonly explained by many-body interactions of optically created electrons and holes, which shrink the original bandgap by a few tens of millielectronvolts with a sub-picosecond time constant, while the accompanying phonon-induced effect remains hitherto unexplored. Here we unravel a significant contribution of hot phonons in the photo-induced transient bandgap renormalization in MAPbBr single crystals, as evidenced by asymmetric spectral evolutions and transient reflection spectral shifts in the picosecond timescale.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have emerged as excellent platforms possessing tunable and controllable optical behaviors that are essential in high-speed and multichannel data transmission in optical wireless communications (OWCs). Here, we demonstrate a novel approach to achieving a tunable wide modulation bandwidth and high net data rate by engineering a combination of organic linkers and metal clusters in MOFs. More specifically, two organic linkers of different emission colors, but equal molecular length and connectivity, are successfully coordinated by zirconium and hafnium oxy-hydroxy clusters to form the desired MOF structures.

View Article and Find Full Text PDF

Lead-free organic metal halide scintillators with low-dimensional electronic structures have demonstrated great potential in X-ray detection and imaging due to their excellent optoelectronic properties. Herein, the zero-dimensional organic copper halide (18-crown-6)Na(HO)CuI (CNCI) which exhibits negligible self-absorption and near-unity green-light emission was successfully deployed into X-ray imaging scintillators with outstanding X-ray sensitivity and imaging resolution. In particular, we fabricated a CNCI/polymer composite scintillator with an ultrahigh light yield of ∼109,000 photons/MeV, representing one of the highest values reported so far for scintillation materials.

View Article and Find Full Text PDF

X-ray imaging technology is critical to numerous different walks of daily life, ranging from medical radiography and security screening all the way to high-energy physics. Although several organic chromophores are fabricated and tested as X-ray imaging scintillators, they generally show poor scintillation performance due to their weak X-ray absorption cross-section and inefficient exciton utilization efficiency. Here, a singlet fission-based high-performance organic X-ray imaging scintillator with near unity exciton utilization efficiency is presented.

View Article and Find Full Text PDF

Thermal barrier coating (TBC) systems are widely adopted in gas turbine blades to improve the thermal efficiency of gas turbine engines. However, TBC failure will happen due to the thermal stress between the different layers of the TBC systems. The traditional two-layer theoretical model only considers TGO (thermally grown oxide) and a substrate in the inner cooling hole with the surface uncoated, which results in poor prediction of the deformations of the TBC systems.

View Article and Find Full Text PDF