Publications by authors named "Jian X Lian"

Article Synopsis
  • Recent advancements in battery technology highlight the importance of solid electrolytes for better performance and safety in next-gen batteries.
  • The study focuses on the interface stability of LiYClBr solid electrolyte with high-voltage NMC cathodes and Li metal anodes, revealing reactions at the cathode interface while maintaining bulk stability.
  • At the Li/LiYClBr interface, significant instability occurs, leading to chemical reactions that create LiCl and LiBr, indicating areas for improvement in interfacial design for all-solid-state batteries.
View Article and Find Full Text PDF

The stability presented by trivalent metal-organic frameworks (MOFs) makes them an attractive class of materials. With phosphonate-based ligands, crystallization is a challenge, as there are significantly more binding motifs that can be adopted due to the extra oxygen tether compared to carboxylate counterparts and the self-assembly processes are less reversible. Despite this, we have reported charge-assisted hydrogen-bonded metal-organic frameworks (HMOFs) consisting of [Cr(HO)] and phosphonate ligands, which were crystallographically characterized.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are porous material formed by the self-assembly of metallic ligands and organic linkers. They are a good candidate for CO gas capture because they have large surface areas and the metal or linker can be tuned to improve CO uptake. In the quest for water and acid stable MOFs, a phosphonate-based organic linker has recently been designed by Glavinovic et al.

View Article and Find Full Text PDF

Using first-principles simulations, we focus on the study of CoO-MnOmixed oxides, which have recently shown alluring features as thermochemical heat storage materials. We provide fundamental atomistic-level insight into the thermodynamics and kinetics of a series of non-stoichiometric CoMnO(0 ⩽⩽ 3 and= 0, 0.125, 0.

View Article and Find Full Text PDF

Graphene-based two-dimensional (2D) materials are promising candidates for a number of different energy applications. A particularly interesting one is in next generation supercapacitors, where graphene is being explored as an electrode material in combination with room temperature ionic liquids (ILs) as electrolytes. Because the amount of energy that can be stored in such supercapacitors critically depends on the electrode-electrolyte interface, there is considerable interest in understanding the structure and properties of the graphene/IL interface.

View Article and Find Full Text PDF

The original version of this article incorrectly listed an affiliation of Sara Bonacchi as 'Present address: Institut National de la Recherche Scientifique (INRS), EMT Center, Boulevard Lionel-Boulet, Varennes, QC, J3X 1S2, 1650, Canada', instead of the correct 'Present address: Department of Chemical Sciences - University of Padua - Via Francesco Marzolo 1 - 35131 Padova - Italy'. And an affiliation of Emanuele Orgiu was incorrectly listed as 'Present address: Department of Chemical Sciences, University of Padua, Via Francesco Marzolo 1, Padova, 35131, Italy', instead of the correct 'Present address: Institut National de la Recherche Scientifique (INRS), EMT Center, Boulevard Lionel-Boulet, Varennes, QC, J3X 1S2, 1650, Canada'. This has been corrected in both the PDF and HTML versions of the article.

View Article and Find Full Text PDF

Molecular switches enable the fabrication of multifunctional devices in which an electrical output can be modulated by external stimuli. The working mechanism of these devices is often hard to prove, since the molecular switching events are only indirectly confirmed through electrical characterization, without real-space visualization. Here, we show how photochromic molecules self-assembled on graphene and MoS generate atomically precise superlattices in which a light-induced structural reorganization enables precise control over local charge carrier density in high-performance devices.

View Article and Find Full Text PDF

The rise of 2D materials made it possible to form heterostructures held together by weak interplanar van der Waals interactions. Within such van der Waals heterostructures, the occurrence of 2D periodic potentials significantly modifies the electronic structure of single sheets within the stack, therefore modulating the material properties. However, these periodic potentials are determined by the mechanical alignment of adjacent 2D materials, which is cumbersome and time-consuming.

View Article and Find Full Text PDF

Graphene has unique physical and chemical properties, making it appealing for a number of applications in optoelectronics, sensing, photonics, composites, and smart coatings, just to cite a few. These require the development of production processes that are inexpensive and up-scalable. These criteria are met in liquid-phase exfoliation (LPE), a technique that can be enhanced when specific organic molecules are used.

View Article and Find Full Text PDF

We describe a method for continuous colloidal pattern replication using contact photolithography. Cr-on-quartz masks are fabricated using colloidal nanosphere lithography and subsequently used as photolithography stamps. Hexagonal pattern arrangements with different dimensions (980, 620 and 480 nm, using colloidal particles with these respective diameters) have been studied.

View Article and Find Full Text PDF