Aerobic methane oxidation coupled with denitrification (AME-D) has garnered significant attention as a promising technology for nitrogen removal from water. Effective biofilm management on the membrane surface is essential to enhance the efficiency of nitrate removal in AME-D systems. In this study, we introduce a novel and scalable layer-structured membrane (LSM) developed using a meticulously designed polyurethane sponge.
View Article and Find Full Text PDFAerobic methane oxidation coupled with denitrification (AME-D) executed in membrane biofilm bioreactors (MBfRs) provides a high promise for simultaneously mitigating methane (CH) emissions and removing nitrate in wastewater. However, systematically experimental investigation on how oxygen partial pressure affects the development and characteristics of counter-diffusional biofilm, as well as its spatial stratification profiles, and the cooperative interaction of the biofilm microbes, is still absent. In this study, we combined Optical Coherence Tomography (OCT) with Confocal Laser Scanning Microscopy (CLSM) to in-situ characterize the development of counter-diffusion biofilm in the MBfR for the first time.
View Article and Find Full Text PDFEndevours on the enhancement of nitrate removal efficiency during methane oxidation coupled with denitrification (AME-D) has always overlooked the role of membrane employed. It would be highly beneficial to enrich the biomass content and to manage biofilm on the membrane, in the utilization of methane and denitrification. In this study, an innovative and scalable double-layer membrane (DLM) was designed and prepared for a membrane biofilm reactor (MBfR), to simultaneously enhance nitrate removal flux and methane utilization efficiency during aerobic methane oxidation coupled with the denitrification (AME-D) process.
View Article and Find Full Text PDFAliphatic polyester, poly(3-hydroxyvalerate) (PHV), is commonly produced as a granular component in bacterial cells of various species. Based on 16S rDNA gene sequence analysis, strain PJC48 was identified as a Bacillus species. The current study is aimed to screen for a high-yield strain that can produce PHV efficiently and to increase PHV product yield by optimizing the fermentative process.
View Article and Find Full Text PDFThe genome sequence of a strain is capable of synthesizing polyhydroxyalkanoates, and sp. is considered a platform strain for the production of many biodegradable materials. Here, we present the sequence of the PJC48 strain genome, which is composed of three chromatin structures, an extracellular structure, and a cytoskeleton.
View Article and Find Full Text PDFBy the method of point pattern analysis, this paper studied the spatial distribution patterns of different age class individuals in the Picea schrenkiana var. tianshanica forest in middle part of Tianshan Mountain and the influence of topographic factors on the distribution patterns. It was observed that the density of different age class individuals in the forest decreased with the increasing DBH of the individuals, and except old trees which presented a random distribution at the scale of 0-12 m, the saplings and the small, medium, and big trees were in aggregative distribution at all scales.
View Article and Find Full Text PDF