The giant Amazonian waterlily (genus ) produces the largest floating leaves in the plant kingdom. The leaves' notable vasculature has inspired artists, engineers, and architects for centuries. Despite the aesthetic appeal and scale of this botanical enigma, little is known about the mechanics of these extraordinary leaves.
View Article and Find Full Text PDFOften wetting is considered from the perspective of a single surface of a rigid substrate and its topographical properties such as roughness or texture. However, many substrates, such as membranes and meshes, have two useful surfaces. Such flexible substrates also offer the potential to be formed into structures with either a double-sided surface (e.
View Article and Find Full Text PDFWe demonstrate the continuous translational invariance of the energy of a capillary surface in contact with reconfigurable solid boundaries. We present a theoretical approach to find the energy-invariant equilibria of spherical capillary surfaces in contact with solid boundaries of arbitrary shape and examine the implications of dynamic frictional forces upon a reconfiguration of the boundaries. Experimentally, we realize our ideas by manipulating the position of a droplet in a wedge geometry using lubricant-impregnated solid surfaces, which eliminate the contact-angle hysteresis and provide a test bed for quantifying dissipative losses out of equilibrium.
View Article and Find Full Text PDFOver the past decade, the most common approach to creating liquid shedding surfaces has been to amplify the effects of nonwetting surface chemistry, using micro/nanotexturing to create superhydrophobic and superoleophobic surfaces. Recently, an alternative approach using impregnation of micro/nanotextured surfaces with immiscible lubricating liquids to create slippery liquid-infused porous surfaces (SLIPS) has been developed. These types of surfaces open up new opportunities to study the mechanism of evaporation of sessile droplets in zero contact angle hysteresis situations where the contact line is completely mobile.
View Article and Find Full Text PDF