Materials with flat bands can serve as a promising platform to investigate strongly interacting phenomena. However, experimental realization of ideal flat bands is mostly limited to artificial lattices or moiré systems. Here, a general way is reported to construct 1D flat bands in phosphorene nanoribbons (PNRs) with a pentagonal nature: penta-hexa-PNRs and penta-dodeca-PNRs, wherein the corresponding 1D flat bands are directly verified by using angle-resolved photoemission spectroscopy.
View Article and Find Full Text PDFPhosphate (Pi) has an important influence on the water environment and physiological processes. Therefore, developing fluorescent probe for quantitative detection of Pi is crucial for water environment monitoring and human health assessment. This work designed a dual-emission ratio nano-fluorescent probe GCDs/Eu-BDC based on europium-based metal-organic frameworks (Eu-MOFs) and blue carbon dots (GCDs) for multicolor fluorescence detection of Pi.
View Article and Find Full Text PDFBackground: Alleviating the sore throat caused by acute pharyngitis is a primary patient concern. However, antibiotics are not commonly recommended drugs, and abuse can lead to serious consequences such as drug resistance. Therefore, seeking alternative treatments is necessary.
View Article and Find Full Text PDFTetracycline (TC) has been widely used in clinical medicine and animal growth promotion due to its broad-spectrum antibacterial properties and affordable prices. Unfortunately, the high toxicity and difficult degradation rate of TC molecules make them easy to accumulate in the environment, which breaks the ecological balance and seriously threatens human health. Rapid and accurate detection of TC residue levels is important for ensuring water quality and food safety.
View Article and Find Full Text PDFDipicolinic acid (DPA), as a biomarker for Bacillus anthracis, is highly toxic at trace levels. Rapid and on-site quantitative detection of DPA is essential for maintaining food safety and public health. This work develops a dual-channel self-calibrated fluorescence sensor constructed by the YVO:Eu and Tb-β-diketone complex for rapid visual detection of DPA.
View Article and Find Full Text PDFPhase engineering of two-dimensional transition metal dichalcogenides (2D-TMDs) offers opportunities for exploring unique phase-specific properties and achieving new desired functionalities. Here, we report a phase-selective in-plane heteroepitaxial method to grow semiconducting H-phase CrSe. The lattice-matched MoSe nanoribbons are utilized as the in-plane heteroepitaxial template to seed the growth of H-phase CrSe with the formation of MoSe-CrSe heterostructures.
View Article and Find Full Text PDFOn-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip.
View Article and Find Full Text PDFExcess formaldehyde (FA) is a strong carcinogen, so the development of a rapid visualized and portable formaldehyde detection platform is of great research importance. A multi-color fluorescence sensing system constituted of model compound (NAHN) and red-emitting InP/ZnS QDs was constructed herein, which can simultaneously realize fluorometric-colorimetric dual-mode sensing when exposed to FA environment. Its preparation process was simplified, the detection process was green, and the limits of detection (LOD) were 0.
View Article and Find Full Text PDFThe flourish of two-dimensional (2D) materials provides a versatile platform for building high-performance electronic devices in the atomic thickness regime. However, the presence of the high Schottky barrier at the interface between the metal electrode and the 2D semiconductors, which dominates the injection and transport efficiency of carriers, always limits their practical applications. Herein, we show that the Schottky barrier can be controllably lifted in the heterostructure consisting of Janus MoSSe and 2D vdW metals by different means.
View Article and Find Full Text PDFLung cancer, with lung adenocarcinoma comprising over 40% of cases, presents a global health challenge. Evidence indicates that long non-coding RNAs (lncRNAs), such as GUSBP11, could have therapeutic potential. Thus we explored the role and mechanism of GUSBP11 in lung adenocarcinoma.
View Article and Find Full Text PDFSpin-polarized two-dimensional (2D) materials with large and tunable spin-splitting energy promise the field of 2D spintronics. While graphene has been a canonical 2D material, its spin properties and tunability are limited. Here, this work demonstrates the emergence of robust spin-polarization in graphene with large and tunable spin-splitting energy of up to 132 meV at zero applied magnetic fields.
View Article and Find Full Text PDF"Test-and-go" single-nucleotide variation (SNV) detection within several minutes remains challenging, especially in low-abundance samples, since existing methods face a trade-off between sensitivity and testing speed. Sensitive detection usually relies on complex and time-consuming nucleic acid amplification or sequencing. Here, a graphene field-effect transistor (GFET) platform mediated by Argonaute protein that enables rapid, sensitive, and specific SNV detection is developed.
View Article and Find Full Text PDFPrecision chemistry demands miniaturized catalytic systems for sophisticated reactions with well-defined pathways. An ideal solution is to construct a nanoreactor system functioning as a chemistry laboratory to execute a full chemical process with molecular precision. However, existing nanoscale catalytic systems fail to in situ control reaction kinetics in a closed-loop manner, lacking the precision toward ultimate reaction efficiency.
View Article and Find Full Text PDFMaternal protein malnutrition leads to liver dysfunction and increases susceptibility to nonalcoholic fatty liver disease in adult fetal growth restriction (FGR) offspring, yet the underlying mechanism remains unknown. Peroxisomes play vital roles in fatty acid β-oxidation (FAO) and detoxification of reactive oxygen species (ROS). Using a well-defined rat model, the peroxins (PEXs), fatty acid metabolic enzymes, and oxidase stress regulators were investigated in the liver of FGR offspring.
View Article and Find Full Text PDFIntroduction: Intrauterine malnutrition impairs embryo kidney development and leads to kidney disease and hypertension in adulthood, yet the underlying mechanism remains unclear.
Methods: With a maternal protein restriction (MPR) rat model, we investigated the critical ciliogenesis factors and β-catenin pathway in FGR fetal kidneys and analyzed the impact of aberrant primary cilia on renal tubular epithelium.
Results: The data showed decreased nephron number and renal tubular dysgenesis in FGR fetus.
The supermoiré lattice, built by stacking two moiré patterns, provides a platform for creating flat mini-bands and studying electron correlations. An ultimate challenge in assembling a graphene supermoiré lattice is in the deterministic control of its rotational alignment, which is made highly aleatory due to the random nature of the edge chirality and crystal symmetry. Employing the so-called "golden rule of three", here we present an experimental strategy to overcome this challenge and realize the controlled alignment of double-aligned hBN/graphene/hBN supermoiré lattice, where the twist angles between graphene and top/bottom hBN are both close to zero.
View Article and Find Full Text PDFEthnopharmacological Relevance: Functional dyspepsia (FD) is a disorder caused by abnormal gut-brain axis regulation and is highly prevalent in China. Cynanchum auriculatum (CA) is often used to treat FD in the ethnic minority areas of Guizhou. Although several CA-based products are currently available in the market, it is unclear which components of CA are efficacious and what their oral absorption mechanism is.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2023
Fluorescent probes with on-site visual detection function have received extensive attention in the detection of chlortetracycline (CTC), which was widely used in aquaculture and animal husbandry. Copper nanoclusters (Cu NCs) with excellent optical properties were prepared using bovine serum albumin (BSA) as a template, and a multicolor fluorescence strategy based on BSA-stabilized Cu NCs (BSA-Cu NCs) for detecting CTC was proposed. BSA-Cu NCs had a red emission at 640 nm.
View Article and Find Full Text PDFThe abuse of tetracycline antibiotics leads to accumulating residues in the human body, seriously affecting human health. Establishing a sensitive, efficient, and reliable method for qualitative and quantitative detection of tetracycline (TC) is necessary. This study integrated silver nanoclusters and europium-based materials into the same nano-detection system to construct a visual and rapid TC sensor with rich fluorescence color changes.
View Article and Find Full Text PDFCompared with traditional assay techniques, field-effect transistors (FETs) have advantages such as fast response, high sensitivity, being label-free, and point-of-care detection, while lacking generality to detect a wide range of small molecules since most of them are electrically neutral with a weak doping effect. Here, we demonstrate a photo-enhanced chemo-transistor platform based on a synergistic photo-chemical gating effect in order to overcome the aforementioned limitation. Under light irradiation, accumulated photoelectrons generated from covalent organic frameworks offer a photo-gating modulation, amplifying the response to small molecule adsorption including methylglyoxal, -nitroaniline, nitrobenzene, aniline, and glyoxal when measuring the photocurrent.
View Article and Find Full Text PDFFerroelectric materials are fascinating for their non-volatile switchable electric polarizations induced by the spontaneous inversion-symmetry breaking. However, in all of the conventional ferroelectric compounds, at least two constituent ions are required to support the polarization switching. Here, we report the observation of a single-element ferroelectric state in a black phosphorus-like bismuth layer, in which the ordered charge transfer and the regular atom distortion between sublattices happen simultaneously.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2022
In the present study, the excretion of four active components(qingyangshengenin, deacylmetaplexigenin, baishouwu benzophenone, and scopoletin) in Cynanchum auriculatum extract in the urine and feces of normal and functional dyspepsia(FD) rats was investigated. Rats were divided into a normal group and an FD model group. The FD model was induced by oral administration of ice hydrochloric acid combined with irregular feeding.
View Article and Find Full Text PDFThe present study aimed to investigate the intestinal absorption characteristics of six components(syringic acid, scopoletin, baishouwu benzophenone, caudatin, qingyangshengenin, and deacylmetaplexigenin) in Cynanchum auriculatum extract. In situ intestinal circulation perfusion model was employed to investigate the differences in intestinal absorption characteristics of C. auriculatum extract under the influence of different intestinal segments, different drug concentrations, and bile in the normal and functional dyspepsia(FD) states.
View Article and Find Full Text PDF