Publications by authors named "Jian Fang Gui"

Sex chromosomes display remarkable diversity and variability among vertebrates. Compared with research on the X/Y and Z/W chromosomes, which have long evolutionary histories in mammals and birds, studies on the sex chromosomes at early evolutionary stages are limited. Here, we precisely assembled the genomes of homozygous XX female and YY male Lanzhou catfish (Silurus lanzhouensis) derived from an artificial gynogenetic family and a self-fertilized family, respectively.

View Article and Find Full Text PDF

Oxygen is essential for aerobic organisms, but little is known about its role in antiviral immunity. Here, we report that during responses to viral infection, hypoxic conditions repress antiviral-responsive genes independently of HIF signaling. EGLN1 is identified as a key mediator of the oxygen enhancement of antiviral innate immune responses.

View Article and Find Full Text PDF
Article Synopsis
  • The golden pompano (Trachinotus blochii), a commercially important fish species in aquaculture, faces threats from diseases due to rapid farming practices.
  • Researchers established a new immortal cell line called GPF (Golden pompano fin cells), which has been successfully cultured over 69 generations, allowing for extensive physiological and pathological studies.
  • The GPF cell line was confirmed to be derived from the golden pompano, showed responses to various treatments (like heavy metals and immune triggers), and provided insights into immune response mechanisms, making it a valuable tool for future research.
View Article and Find Full Text PDF
Article Synopsis
  • CRISPR-Cas9 technology is being used to edit fish genomes, specifically targeting zebrafish to enhance their resistance to viral infections.
  • A specific gene in crucian carp that inhibits the interferon response was identified and its zebrafish counterpart was edited to create a mutant with better resistance to SVCV (a fish virus).
  • The edited zebrafish demonstrate improved antiviral responses, highlighting how modifying negative regulators of the immune system can bolster fish survival against viruses.
View Article and Find Full Text PDF

Unisexual reproduction is generally relevant to polyploidy, and unisexual vertebrates are often considered an evolutionary "dead end" due to the accumulation of deleterious mutations and absence of genetic diversity. However, some unisexual polyploids have developed strategies to avoid genomic decay, and thus provide ideal models to unveil unexplored evolutionary mechanisms, from the reproductive success to clonal diversity creation. This article reviews the evolutionary mechanisms for overcoming meiotic barrier and generating genetic diversity in unisexual vertebrates, and summarizes recent research advancements in the polyploid Carassius complex.

View Article and Find Full Text PDF

In mammals, NLRX1 is a unique member of the nucleotide-binding domain and leucine-rich repeat (NLR) family showing an ability to negatively regulate IFN antiviral immunity. Intron-containing genes, including NLRX1, have more than one transcript due to alternative splicing; however, little is known about the function of its splicing variants. Here, we identified a transcript variant of NLRX1 in zebrafish (Danio rerio), termed NLRX1-tv4, as a negative regulator of fish IFN response.

View Article and Find Full Text PDF
Article Synopsis
  • The golden pompano is a commercially important fish in China facing threats from Nervous necrosis virus (NNV), prompting the need for research on its immune system.
  • This study focused on the characterization and function of TANK-binding kinase 1 (gpTBK1), which plays a key role in the immune response, particularly in activating interferon production.
  • Findings revealed that gpTBK1 is upregulated during NNV infection, interacts with other immune proteins, and is essential for the expression of antiviral genes in golden pompano, highlighting its importance in combating viral threats.
View Article and Find Full Text PDF

Ranaviruses are promiscuous pathogens that threaten lower vertebrates globally. In the present study, two ranaviruses (SCRaV and MSRaV) were isolated from two fishes of the order Perciformes: mandarin fish () and largemouth bass (). The two ranaviruses both induced cytopathic effects in cultured cells from fish and amphibians and have the typical morphologic characteristics of ranaviruses.

View Article and Find Full Text PDF

The association between polyploidy and reproduction transition, which is an intriguing issue in evolutionary genetics, can also be exploited as an approach for genetic improvement in agriculture. Recently, we generated novel amphitriploids (NA3n) by integrating the genomes of the gynogenetic Carassius gibelio and sexual C. auratus, and found gynogenesis was recovered in most NA3n females (NA3n♀I).

View Article and Find Full Text PDF

Background: Red-tail catfish (Hemibagrus wyckioides) is an important commercially farmed catfish in southern China. Males of red-tail catfish grow faster than females, suggesting that all-male catfish will produce more significant economic benefits in aquaculture practice. However, little research has been reported on sex determination and gonadal development in red-tail catfish.

View Article and Find Full Text PDF

In humans, four small HERCs (HERC3-6) exhibit differential degrees of antiviral activity toward HIV-1. Recently we revealed a novel member HERC7 of small HERCs exclusively in non-mammalian vertebrates and varied copies of genes in distinct fish species, raising a question of what is the exact role for a certain fish gene. Here, a total of four genes (named HERC7a-d sequentially) are identified in the zebrafish genome.

View Article and Find Full Text PDF

Assembly of a complete Y chromosome is a significant challenge in animals with an XX/XY sex-determination system. Recently, we created YY-supermale yellow catfish by crossing XY males with sex-reversed XY females, providing a valuable model for Y-chromosome assembly and evolution. Here, we assembled highly homomorphic Y and X chromosomes by sequencing genomes of the YY supermale and XX female in yellow catfish, revealing their nucleotide divergences with only less than 1% and with the same gene compositions.

View Article and Find Full Text PDF

Microbial symbionts are of great importance for macroscopic life, including fish, and both collectively comprise an integrated biological entity known as the holobiont. Yet little is known as to how the normal balance within the fish holobiont is maintained and how it responds to biotic and/or abiotic influences. Here, through amplicon profiling, the genealogical relationship between artificial F1 hybrid pufferfish with growth heterosis, produced from crossing female Takifugu obscurus with male Takifugu rubripes and its maternal halfsibling purebred, was well recapitulated by their gut microbial community similarities, indicating an evident parallelism between host phylogeny (hybridity) and microbiota relationships therein.

View Article and Find Full Text PDF

In mammals, right open reading frame kinases (RIOKs) are initially reported to participate in cancer cell proliferation, apoptosis, migration and invasion, and recently they have been related to host immune response. Little is known about the homologs of RIOKs in fish. In the current study, we cloned three homologous genes of RIOK family in yellow catfish (Pelteobagrus fulvidraco), termed Pfriok1, Pfriok2 and Pfriok3.

View Article and Find Full Text PDF

Research on the evolutionary fate of duplicated genes in recurrent polyploids is scarce due to the difficulties in disentangling the different homeologs and alleles of duplicated genes. This chapter describes the detailed procedures to identify different homeologs and alleles of duplicated genes, to analyze their molecular characteristics, and to reveal their functional divergence by gene editing with CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9). Using the gene editing approach, we efficiently constructed multiple knockout mutant lines with single or simultaneously disrupted different homeologs or alleles in a recurrent polyploid fish, demonstrating its usability for targeting and mutating multiple divergent homeologs and alleles in recurrent duplicated genomes.

View Article and Find Full Text PDF

Catfish (Siluriformes) are one of the most diverse vertebrate orders and are characterized by whisker-like barbels, which are important sensory organs in most of teleosts. However, their specific biological functions are still unclear. Red-tail catfish (Hemibagrus wyckioides) is well-known catfish species with four pairs of barbels, of which the maxillary barbels reach two-thirds of the body length.

View Article and Find Full Text PDF

Viral co-infection has been found in animals; however, the mechanisms of co-infection are unclear. The abundance and diversity of viruses in water make fish highly susceptible to co-infection. Here, we reported a co-infection in fish, which resulted in reduced host lethality and illustrated the intracellular molecular mechanism of viral co-infection.

View Article and Find Full Text PDF

Aquatic animal viruses infect and transmit in aquatic environments, causing serious harm to the aquaculture industry and a variety of wild aquatic animals. How are they affected by environmental factors and do they represent potential threat to mammalian heath or not? Here, the effects of environmental factors (ultraviolet radiation (UV), temperature, pH, and drying) and their threshold on five epidemic aquatic animal viruses infecting amphibians and bony fish, including virus (RGV), ranavirus (ADRV), Grass carp reovirus (GCRV), rhabdovirus (PORV), and rhabdovirus (SMRV), were measured and compared in a fish cell line. The examination of virus titers after different treatment in fish cells showed that the two iridoviruses, RGV and ADRV, had a higher tolerance to all of the environmental factors, such as they only had a decay rate of 22-36% when incubated at 37 °C for 7 days.

View Article and Find Full Text PDF

Goldfish (Carassius auratus) have long fascinated evolutionary biologists and geneticists because of their diverse morphological and color variations. Recent genome-wide association studies have provided a clue to uncover genomic basis underlying these phenotypic variations, but the causality between phenotypic and genotypic variations have not yet been confirmed. Here, we edited proposed candidate genes to recreate phenotypic traits and developed a rapid biotechnology approach which combines gene editing with high-efficiency breeding, artificial gynogenesis, and temperature-induced sex reversal to establish homozygous mutants within two generations (approximately eight months).

View Article and Find Full Text PDF
Article Synopsis
  • Foxl2 is important for the development of ovaries in fish, but we don't know much about how it works during the early growth of embryos.
  • In this study, scientists looked at zebrafish and found that two versions of Foxl2 (foxl2a and foxl2b) were mostly active in certain parts of the embryo during important growth stages.
  • They discovered that zebrafish without these Foxl2 genes had problems in a specific part of their brain, indicating that Foxl2 plays a key role in brain development.
View Article and Find Full Text PDF

Tripartite motif (TRIM) family proteins have come forth as important modulators of innate signaling dependent on of E3 ligase activity. Recently, several human TRIM proteins have been identified as unorthodox RNA-binding proteins by RNA interactome analyses; however, their targets and functions remain largely unknown. FTRCA1 is a crucian carp ()-specific finTRIM (fish novel TRIM) member and negatively regulates the IFN antiviral response by targeting two retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) pathway molecules, that is, TANK-binding kinase 1 (TBK1) and IFN regulatory factor 7 (IRF7).

View Article and Find Full Text PDF

Retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) are viral RNA sensors that regulate host interferon (IFN)-mediated antiviral signaling. LGP2 (laboratory genetics and physiology 2) lacks the N-terminal caspase activation and recruitment domains (CARDs) responsible for signaling transduction in the other two RLR proteins, RIG-I and melanoma differentiation associated gene-5 (MDA5). How LGP2 regulates IFN signaling is controversial, and inconsistent results have often been obtained in overexpression assays when performed in fish cells and mammalian cells.

View Article and Find Full Text PDF

Unisexual animals are commonly found in some polyploid species complexes, and most of these species have had a long evolutionary history. However, their method for avoiding genomic decay remains unclear. The polyploid Carassius complex naturally comprises the sexual amphidiploid C.

View Article and Find Full Text PDF

In mammals, LGP2 is the enigmatic RLR family member, being initially believed as an inhibitor of RLR-triggered IFN response but subsequently as an activator of MDA5 signaling and an inhibitor of RIG-I signaling. The contradiction happens to fish LGP2. Here, we generate a loss-of-function ( ) zebrafish mutant, which is highly susceptible to SVCV infection, displaying an initially decreased activation of IFN response and a following increased one.

View Article and Find Full Text PDF