Biochem Pharmacol
December 2024
Hyperlipidemia, a metabolic disease characterized by excessive blood lipid, disturbs bone metabolism by shifting cell fate of bone marrow stromal cells (BMSCs) towards adipogenic differentiation, thus resulting in poor bone regeneration and osseointegration of implants. Among numerous factors affecting hyperlipidemic bone metabolism, non-coding RNAs play an essential role in post-transcriptional regulation. Our previous study has shown that miR-193a-3p levels were elevated in hyperlipidemia, which hindered implant osseointegration and BMSCs function.
View Article and Find Full Text PDFStem cells from the apical papilla(SCAPs) exhibit remarkable tissue repair capabilities, demonstrate anti-inflammatory and pro-angiogenic effects, positioning them as promising assets in the realm of regenerative medicine. Recently, the focus has shifted towards exosomes derived from stem cells, perceived as safer alternatives while retaining comparable physiological functions. This study delves into the therapeutic implications of exosomes derived from SCAPs in the methionine-choline-deficient (MCD) diet-induced mice non-alcoholic steatohepatitis (NASH) model.
View Article and Find Full Text PDFDiabetic bone disease (DBD) is a complication of diabetes mellitus (DM) and is characterized by impaired osteocyte function and delayed bone remodeling due to high blood glucose levels and sustained release of inflammatory factors. Recent studies show that the regulation of osteoblasts (OBs) by bone marrow stromal cells (BMSCs) is an important mechanism in alleviating DBD and that exosomes are recognized as the key medium. Mesenchymal stem cell-derived exosome (MSC-Exos) therapy is a promising approach to facilitate tissue repair.
View Article and Find Full Text PDFThe incidence of acute myocardial infarction (AMI) is currently increasing. Early detection is important for the treatment and prognosis of patients with AMI. Heart-type fatty acid-binding protein (H-FABP) may be used as an early marker of AMI due to its high sensitivity, specificity and prognostic value.
View Article and Find Full Text PDFThe key factor in the synthesis of intrinsic flame retardant polymers is the thermal stability and reactivity of phosphorus-based flame retardants. However, it is difficult to realize both thermal stability and high reactivity by using one phosphorus-based flame retardant. Herein, we proposed a strategy to improve the thermal stability of highly reactive flame-retardant, 4-(2-(((2-carboxyethyl)(phenyl)phosphoryl)oxy)ethoxy)-4-oxohexanoic acid (CPPOA), by reacting it with 1,6-diaminohexane to obtain CPPOA salt, which then was copolymerized with PA66 salt to obtain intrinsic flame-retardant polyamide 66 (FRPA66).
View Article and Find Full Text PDF