Expansion microscopy (ExM) enables sub-diffraction imaging by physically expanding labeled tissue samples. This increases the tissue volume relative to the instrument point spread function (PSF), thereby improving the effective resolution by reported factors of 4 - 20X [1, 2]. However, this volume increase dilutes the fluorescence signal, reducing both signal-to noise ratio (SNR) and acquisition speed.
View Article and Find Full Text PDFAlthough the incidence of cervical cancer (CC) has been reduced in high-income countries due to human papillomavirus (HPV) vaccination and screening strategies, it remains a significant public health issue that poses a threat to women's health in low-income countries. Here, we perform a comprehensive proteogenomic profiling of CC tumors obtained from 139 Chinese women. Integrated proteogenomic analysis links genetic aberrations to downstream pathogenesis-related pathways and reveals the landscape of HPV-associated multi-omic changes.
View Article and Find Full Text PDFTo rigorously assess black tea quality in large-scale production, this study introduces a multi-modal fusion approach integrating computer vision (CV) with Near-Infrared Spectroscopy (NIRS). CV technology is first applied to evaluate the tea's appearance quality, while NIRS quantifies key chemical components, including tea polyphenols (TP), free amino acids (FAA), and caffeine (CAF). Additionally, different methods are employed to extract potential quality features from NIR spectra.
View Article and Find Full Text PDFReactive oxygen species (ROS)-mediated sonodynamic therapy (SDT) holds increasing potential in treating deep-seated tumor owing to the high tissue-penetration depth. However, the inevitable accumulation of sonosensitizers in normal tissues not only make it difficult to realize the in situ SDT, but also induces sonodynamic effects in normal tissues. Herein, this work reports the passivation and selective activation strategies for the sonodynamic and near-infrared (NIR) imaging performances of an intelligent antitumor theranostic platform termed Cu-IR783 nanoparticles (NPs).
View Article and Find Full Text PDFPhytochemical study on the stems and leaves of led to the isolation of a new 2-arylbenzofuran, artocartone (), as well as seven known 2-arylbenzofurans (). The chemical structure of was established by means of comprehensive spectroscopic analyses and the known compounds were determined by comparing their MS and NMR data with those reported data in literature. The antiproliferative activities of all isolates against five human cancer cell lines: HL-60, SMMC-7721, A-375, MCF-7 and SW480 were evaluated.
View Article and Find Full Text PDFLung cancer (LC) is the leading cause of cancer-related mortality worldwide. Radiotherapy is the main component of LC treatment; however, its efficacy is often limited by radioresistance development, resulting in unsatisfactory clinical outcomes. Here, we found that LC radiosensitivity is up-regulated by decreased expression of long-chain acyl-CoA synthase 6 (ACSL6) after irradiation.
View Article and Find Full Text PDFThe chemical constituents from the stems and leaves of Artocarpus tonkinensis in Artocarpus of Moraceae were systematically studied by means of silica gel, octadecylsilyl(ODS), and Sephadex LH-20 gel column chromatographies, as well as preparative high-performance liquid chromatography(Pre-HPLC) and a variety of chromatographic separation techniques. The spectral data and physicochemical properties of the compounds were obtained from separation and compared with those of the compounds reported in the literature. As a result, 11 compounds isolated from the 90% ethanol extract of the stems and leaves of A.
View Article and Find Full Text PDFSulfidized nanoscale zero-valent iron (S-nZVI) showed excellent removal capacity for cadmium (Cd) in aqueous phase. However, the remediation effects of S-nZVI on Cd-contaminated sediment and its interactions with microorganisms in relation to Cd fate remain unclear. The complexity of the external environment posed a challenge for Cd remediation.
View Article and Find Full Text PDFAntibiotics and antibiotic resistance genetic pollution have become a global environmental and health concern recently, with frequent detection in various environmental media. Therefore, finding ways to control antibiotics and antibiotic resistance genes (ARGs) is urgently needed. Nano zero-valent iron (nZVI) has shown a positive effect on antibiotics degradation and restraining ARGs, making it a promising solution for controlling antibiotics and ARGs.
View Article and Find Full Text PDFSonodynamic therapy (SDT) as a promising non-invasive anti-tumor means features the preferable penetration depth, which nevertheless, usually can't work without sonosensitizers. Sonosensitizers produce reactive oxygen species (ROS) in the presence of ultrasound to directly kill tumor cells, and concurrently activate anti-tumor immunity especially after integration with tumor microenvironment (TME)-engineered nanobiotechnologies and combined therapy. Current sonosensitizers are classified into organic and inorganic ones, and current most reviews only cover organic sonosensitizers and highlighted their anti-tumor applications.
View Article and Find Full Text PDFThe pollution of antibiotics, specifically ciprofloxacin (CIP), has emerged as a significant issue in the aquatic environment. Advanced oxidation processes (AOPs) are capable of achieving stable and efficient removal of antibiotics from wastewater. In this work, biochar-supported sulfidized nanoscale zero-valent iron (S-nZVI/BC) was adopted to activate persulfate (PS) for the degradation of CIP.
View Article and Find Full Text PDFBackground: China managed coronavirus disease 2019 (COVID-19) with measures against Class B infectious diseases, instead of Class A infectious diseases, in a major shift of its epidemic response policies. We aimed to generate robust information on the transmission dynamics of novel coronavirus infection in Shanxi, a province located in northern China, after the implementation of the "Class B infectious disease Class B management" policy.
Methods: We consolidated infection data in Shanxi province from December 6, 2022 to January 14, 2023 through a network questionnaire survey and sentinel surveillance.
The corrosion and surface passivation of sulfidized zero-valent iron (S-ZVI) by common groundwater ions and contaminants are considered to be the most challenging aspects in the application of S-ZVI for remediation of chlorinated contaminants. This study investigated the impacts of corrosive chloride (Cl) and passivation of hexavalent chromium (Cr(VI)) on the long-term reactivity, selectivity, corrosion behavior, and physicochemical properties during the 60-day aging process of S-ZVI. Although the co-existing of Cl promoted the initial reactivity of S-ZVI, the rapid consumption of Fe° content shortened the reactive lifetime owing to the insufficient electron capacity.
View Article and Find Full Text PDFThe bone marrow contains peripheral nerves that promote haematopoietic regeneration after irradiation or chemotherapy (myeloablation), but little is known about how this is regulated. Here we found that nerve growth factor (NGF) produced by leptin receptor-expressing (LepR) stromal cells is required to maintain nerve fibres in adult bone marrow. In nerveless bone marrow, steady-state haematopoiesis was normal but haematopoietic and vascular regeneration were impaired after myeloablation.
View Article and Find Full Text PDFModified nanoscale zero-valent iron (NZVI) exhibited great potential for the remediation of heavy metal contaminated river sediments, but its mechanisms and environmental risks are still unclear. This study systematically discussed the performance and the mechanisms of modified NZVI materials, i.e.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2023
Over the past decade, sulfidized nanoscale zero-valent iron (S-nZVI) has been developed as a promising tool for the remediation of contaminated soil, sediment, and water. Although most studies have focused on applying S-nZVI for clean-up purposes, there is still a lack of systematic summary and discussion from its synthesis, application, to toxicity assessment. This review firstly summarized and compared the properties of S-nZVI synthesized from one-step and two-step synthesis methods, and the modification protocols for obtaining better stability and reactivity.
View Article and Find Full Text PDFFour new xanthones, cratocochinones A-D (-), together with eight known analogues (-), were isolated from the stems and leaves of . The chemical structures of cratocochinones A-D (-) were elucidated by comprehensive spectroscopic analyses and the known compounds were identified by comparisons with the spectral data reported in the literature. All isolated compounds - were evaluated for their anti-inflammatory activities and anti-HIV-1 activities.
View Article and Find Full Text PDFPost-sulfidated nanoscale zero-valent iron with a controlled FeS shell thickness deposited on biochar (S-nZVI/BC) was synthesized to degrade tetrabromobisphenol A (TBBPA). Detailed characterizations revealed that the increasing sulfidation degree altered shell thickness/morphology, S content/speciation/distribution, hydrophobicity, and electron transfer capacity. Meanwhile, the BC improved electron transfer capacity and hydrophobicity and inhibited the surface oxidation of S-nZVI.
View Article and Find Full Text PDFPatellofemoral joint stress (PFJS) is an important parameter for understanding the mechanism of patellofemoral joint pain, preventing patellofemoral joint injury, and evaluating the therapeutic efficacy of PFP rehabilitation programs. The purpose of this systematic review was to identify and categorize the non-invasive technique to evaluate the PFJS. Literature searches were conducted from January 2000 to October 2022 in electronic databases, namely, PubMed, Web of Science, and EBSCO (Medline, SPORTDiscus).
View Article and Find Full Text PDFIonizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area.
View Article and Find Full Text PDF