For binocular stereo matching techniques, the most advanced method currently is using an iterative structure based on GRUs. Methods in this class have shown high performance on both high-resolution images and standard benchmarks. However, simply replacing cost aggregation with a GRU iterative method leads to the original cost volume for disparity calculation lacking non-local geometric and contextual information.
View Article and Find Full Text PDFAlthough thermal hydrolysis pretreatment enhances disposal efficiency of sludge, it inevitably leads to melanoidins formation, which will negatively impact the subsequent wastewater treatment processes. However, their effect on the dewaterability of thermal hydrolyzed sludge (THS) remains poorly understood. This study aimed to uncover the underlying mechanisms of how melanoidins affecting dewaterability of THS.
View Article and Find Full Text PDFThe aim of this study was to explore alterations in plasma metabolites among mares afflicted with endometritis. Mares were divided into two groups, namely, the equine endometritis group ( = 8) and the healthy control group ( = 8), which included four pregnant and four non-pregnant mares, using a combination of clinical assessment and laboratory confirmation. Plasma samples from both groups of mares were analyzed through untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a severe neurological condition characterized by inflammation in the central nervous system. SERPINA3 has garnered attention as a potential biomarker for assessing this inflammation. Our study aimed to explore the predictive value of postoperative serum SERPINA3 levels in identifying the risk of cerebral edema and its prognostic implications in TBI.
View Article and Find Full Text PDFSilk fibroin is an important natural fibrous protein with excellent prospects for tissue engineering applications. With profound studies in recent years, its potential in tissue repair has been developed. A growing body of literature has investigated various fabricating methods of silk fibroin and their application in tissue repair.
View Article and Find Full Text PDFExtensive research has delved into the multifaceted roles of osteoclasts beyond their traditional function in bone resorption in recent years, uncovering their significant influence on bone formation. This shift in understanding has spurred investigations into engineering strategies aimed at leveraging osteoclasts to not only inhibit bone resorption but also facilitate bone regeneration. This review seeks to comprehensively examine the mechanisms by which osteoclasts impact bone metabolism.
View Article and Find Full Text PDFZearalenone (ZEA) is a common non-steroidal estrogenic mycotoxin found in a range of animal feeds and poses a serious threat to the reproductive health of farm animals and humans. However, the mechanism underlying ZEA-induced reproductive toxicity in sheep remains unknown. Granulosa cells are crucial for egg maturation and the fertility of female sheep.
View Article and Find Full Text PDFBovine endometritis is characterized by reduced milk production and high rates of infertility. Prior research has indicated that melatonin may possess anti-inflammatory and antioxidant properties that can counteract the progression of inflammatory diseases. In this research, we attempted to elucidate the protective effects of melatonin on LPS-induced endometritis.
View Article and Find Full Text PDFA smart deoxyribose nucleic acid nanogel coated polydopamine nanosphere hybrid was designed for chemo-photothermal therapy of cancer. The nanohybrid showed good colloid stability, narrow size distribution, high drug loading, good biocompatibility, and high photothermal conversion efficiency, and could release the drug on desired tumor sites.
View Article and Find Full Text PDFLight-induced degradation (LID) phenomenon is commonly found in optoelectronics devices. Self-healing effect in halide lead perovskite solar cells was investigated since the electrons and holes in the shallow traps could escape easily at room temperature. However, the degradation in the semiconductors could not easily recover at room temperature, and many of them needed annealing at temperatures in the several hundreds, which was not friendly to the integrated optoelectronic semiconductor devices.
View Article and Find Full Text PDFDroplet microfluidics has recently emerged as a powerful platform for a variety of biomedical applications including microreactors, bioactive compound encapsulation, and single cell culture and analysis; all these applications require long-term droplet stability, which, however, makes breaking the emulsion and retrieving the loaded samples difficult. Herein, we developed a novel class of thermo-responsive fluorosurfactants to control the droplet status simply by temperature. The surfactants were synthesized by coupling perfluorinated polyethers (PFPEs) with a thermo-responsive block of poly(-isopropylacrylamide) (pNIPAM) or poly(2-ethyl-2-oxazoline) (pEtOx) with lower critical solution temperature (LCST).
View Article and Find Full Text PDFIn periodontal treatment, patient differences in disease phenotype and treatment responses are well documented. Therefore, therapy duration and dosage should be tailored to the requirements of individual patients. To facilitate such personalized medication, a tunable and controllable system is needed to deliver drugs directly into the diseased periodontal pockets.
View Article and Find Full Text PDFLocal drug delivery systems have recently been developed for multiple diseases that have the requirements of site-specific actions, prolonged delivery periods, and decreased drug dosage to reduce undesirable side effects. The challenge for such systems is to achieve directional and precise delivery in inaccessible narrow lesions, such as periodontal pockets or root canals in deeper portions of the dentinal tubules. The primary strategy to tackle this challenge is fabricating a smart tracking delivery system.
View Article and Find Full Text PDFElectrospraying, a liquid atomization-based technique, has been used to produce and formulate micro/nanoparticular cargo carriers for various biomedical applications, including drug delivery, biomedical imaging, implant coatings, and tissue engineering. In this mini review, we begin with the main features of electrospraying methods to engineer carriers with various bioactive cargos, including genes, growth factors, and enzymes. In particular, this review focuses on the improvement of traditional electrospraying technology for the fabrication of carriers for living cells and providing a suitable condition for gene transformation.
View Article and Find Full Text PDFThe aim of this study was to investigate the influence of end group of poly(lactic-co-glycolic acid) (PLGA) on the drug loading and release behavior of electrospray-generated PLGA microspheres. To this end, doxycycline hyclate (DOX) was selected as a model drug, and PLGA (molecular weight: 17 and 44 kDa) with either an acid or ester end group were electrosprayed with DOX. The processing parameters were optimized to obtain microspheres comparable in size.
View Article and Find Full Text PDFRegenerative medicine seeks advanced solutions for bone repair in the form of bioactive synthetic scaffolds by using simple and reproducible processing techniques. In this work, poly-ε-caprolactone (PCL)-based porous scaffolds with improved osteoconductive and osteoinductive properties were processed by supercritical foaming through a careful tuning of components and processing conditions. Composite scaffolds were prepared from various combinations of PCL, silk fibroin and nano-hydroxyapatite (nHA).
View Article and Find Full Text PDFA label-free ratiometric fluorescence aptasensor has been developed for the rapid and sensitive detection of cocaine in complex biofluids. The fluorescent aptasensor is composed of a non-labeled GC-38 cocaine aptamer which serves as a basic sensing unit and two fluorophores, 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) and SYBR Green I (SGI) which serves as a signal reporter and a build-in reference, respectively. The detection principle is based on a specific cocaine mediated ATMND displacement reaction and the corresponding change in the fluorescence ratio of ATMND to SGI.
View Article and Find Full Text PDFA facile label-free sensing method is developed for the one-step and highly sensitive fluorescent detection of DNA, which couples the specific C-C mismatch bonding and fluorescent quenching property of a trimethyl-substituted naphthyridine dye (ATMND) with the exonuclease III (Exo III) assisted cascade target recycling amplification strategy. In the absence of target DNA, the DNA hairpin probe with a C-C mismatch in the stem and more than 4 bases overhung at the 3' terminus could entrap and quench the fluorescence of ATMND and resist the digestion of Exo III, thus showing a low fluorescence background. In the presence of the target, however, the hybridization event between the two protruding segments and the target triggers the digestion reaction of Exo III, recycles the initial target, and simultaneously releases both the secondary target analogue and the ATMND caged in the stem.
View Article and Find Full Text PDFA highly sensitive signal-on photoelectrochemical (PEC) immunosensor was fabricated here using CdS:Mn/TiO2 as photoelectrochemical sensing platform, and silver nanoclusters and graphene naocomposites (AgNCs-GR) as signal amplification tags. The immunosensor was constructed based on the specific sandwich immunoreaction, and the photo-to-current conversion efficiency of the isolated protein modified CdS:Mn/TiO2 matrix was improved based on the synergistic effect of AgNCs-GR. Under irradiation, the photogenerated electrons from the AgNCs at a higher conduction band edge level could be transport to the CdS:Mn/TiO2 matrix with the assistance of highly conductive graphene nanosheets, as well as recycle the trapped excitons in the defects-rich CdS:Mn/TiO2 interface.
View Article and Find Full Text PDFSilver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H2O2. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs.
View Article and Find Full Text PDF