Cavity magnonics is an emerging research area focusing on the coupling between magnons and photons. Despite its great potential for coherent information processing, it has been long restricted by the narrow interaction bandwidth. In this Letter, we theoretically propose and experimentally demonstrate a novel approach to achieve broadband photon-magnon coupling by adopting slow waves on engineered microwave waveguides.
View Article and Find Full Text PDFCurrent induced spin-orbit torque (SOT) holds great promise for next generation magnetic-memory technology. Field-free SOT switching of perpendicular magnetization requires the breaking of in-plane symmetry, which can be artificially introduced by external magnetic field, exchange coupling or device asymmetry. Recently it has been shown that the exploitation of inherent crystal symmetry offers a simple and potentially efficient route towards field-free switching.
View Article and Find Full Text PDFHeterogeneities in structure and polarization have been employed to enhance the energy storage properties of ferroelectric films. The presence of nonpolar phases, however, weakens the net polarization. Here, we achieve a slush-like polar state with fine domains of different ferroelectric polar phases by narrowing the large combinatorial space of likely candidates using machine learning methods.
View Article and Find Full Text PDFThe anomalous Hall effect (AHE) is a quantum coherent transport phenomenon that conventionally vanishes at elevated temperatures because of thermal dephasing. Therefore, it is puzzling that the AHE can survive in heavy metal (HM)/antiferromagnetic (AFM) insulator (AFMI) heterostructures at high temperatures yet disappears at low temperatures. In this paper, an unconventional high-temperature AHE in HM/AFMI is observed only around the Néel temperature of AFM, with large anomalous Hall resistivity up to 40 nΩ cm is reported.
View Article and Find Full Text PDFRelaxor ferroelectric-based energy storage systems are promising candidates for advanced applications as a result of their fast speed and high energy storage density. In the research field of ferroelectrics and relaxor ferroelectrics, the concept of solid solution is widely adopted to modify the overall properties and acquire superior performance. However, the combination between antiferroelectric and paraelectric materials was less studied and discussed.
View Article and Find Full Text PDFStrain-mediated magnetoelectric (ME) coupling in ferroelectric (FE)/ferromagnetic (FM) heterostructures offers a unique opportunity for both fundamental scientific research and low-power multifunctional devices. Relaxor-FEs, such as (1 − )Pb(MgNb)O-()PbTiO (PMN-PT), are ideal FE layer candidates because of their giant piezoelectricity. However, thin films of PMN-PT suffer from substrate clamping, which substantially reduces piezoelectric in-plane strains.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2021
Narrowband terahertz (THz) radiation is crucial for high-resolution spectral identification, but a narrowband THz source driven by a femtosecond (fs) laser has remained scarce. Here, it is computationally predicted that a metal/dielectric/magnetoelastic heterostructure enables converting a fs laser pulse into a multicycle THz pulse with a narrow linewidth down to ∼1.5 GHz, which is in contrast to the single-cycle, broadband THz pulse from the existing fs-laser-excited emitters.
View Article and Find Full Text PDFRoom-temperature skyrmions in magnetic multilayers are considered to be promising candidates for the next-generation spintronic devices. Several approaches have been developed to control skyrmions, but they either cause significant heat dissipation or require ultrahigh electric fields near the breakdown threshold. Here, we demonstrate electric-field control of skyrmions through strain-mediated magnetoelectric coupling in ferromagnetic/ferroelectric multiferroic heterostructures.
View Article and Find Full Text PDFSpin electronic devices based on crystalline oxide layers with nanoscale thicknesses involve complex structural and magnetic phenomena, including magnetic domains and the coupling of the magnetism to elastic and plastic crystallographic distortion. The magnetism of buried nanoscale layers has a substantial impact on spincaloritronic devices incorporating garnets and other oxides exhibiting the spin Seebeck effect (SSE). Synchrotron hard x-ray nanobeam diffraction techniques combine structural, elemental, and magnetic sensitivity and allow the magnetic domain configuration and structural distortion to be probed in buried layers simultaneously.
View Article and Find Full Text PDFControlling magnetization dynamics is imperative for developing ultrafast spintronics and tunable microwave devices. However, the previous research has demonstrated limited electric-field modulation of the effective magnetic damping, a parameter that governs the magnetization dynamics. Here, we propose an approach to manipulate the damping by using the large damping enhancement induced by the two-magnon scattering and a nonlocal spin relaxation process in which spin currents are resonantly transported from antiferromagnetic domains to ferromagnetic matrix in a mixed-phased metallic alloy FeRh.
View Article and Find Full Text PDFExploring the dynamic responses of a material is of importance to both understanding its fundamental physics at high frequencies and potential device applications. Here we develop a phase-field model for predicting the dynamics of ferroelectric materials and study the dynamic responses of ferroelectric domains and domain walls subjected to an ultrafast electric-field pulse. We discover a transition of domain evolution mechanisms from pure domain growth at a relatively low field to combined nucleation and growth of domains at a high field.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2017
Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. However, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. Using nanoporous β-LiPS electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functional theory (DFT) calculations.
View Article and Find Full Text PDFEpitaxial III-V semiconductor heterostructures are key components in modern microelectronics, electro-optics, and optoelectronics. With superior semiconducting properties, halide perovskite materials are rising as promising candidates for coherent heterostructure devices. In this report, spinodal decomposition is proposed and experimentally implemented to produce epitaxial double heterostructures in halide perovskite system.
View Article and Find Full Text PDFStrain is a novel approach to manipulating functionalities in correlated complex oxides. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness.
View Article and Find Full Text PDFVoltage-driven 180° magnetization switching provides a low-power alternative to current-driven magnetization switching widely used in spintronic devices. Here we computationally demonstrate a promising route to achieve voltage-driven in-plane 180° magnetization switching in a strain-mediated multiferroic heterostructure (e.g.
View Article and Find Full Text PDFPurely voltage-driven, repeatable magnetization reversal provides a tantalizing potential for the development of spintronic devices with a minimum amount of power consumption. Substantial progress has been made in this subject especially on magnetic/ferroelectric heterostructures. Here, we report the in situ observation of such phenomenon in a NiFe thin film grown directly on a rhombohedral Pb(Mg1/3Nb2/3)0.
View Article and Find Full Text PDFMagnetic domain-wall motion driven by a voltage dissipates much less heat than by a current, but none of the existing reports have achieved speeds exceeding 100 m/s. Here phase-field and finite-element simulations were combined to study the dynamics of strain-mediated voltage-driven magnetic domain-wall motion in curved nanowires. Using a ring-shaped, rough-edged magnetic nanowire on top of a piezoelectric disk, we demonstrate a fast voltage-driven magnetic domain-wall motion with average velocity up to 550 m/s, which is comparable to current-driven wall velocity.
View Article and Find Full Text PDF