Adequate amounts of live probiotics reaching the gut are necessary to maintain host health. However, the harsh environment during processing, the low pH of human gastric acid, and the high concentration of bile salts in the gut can significantly reduce survivability of probiotics. In this work, we propose a simple Pickering emulsion gels strategy to encapsulate Lactobacillus plantarum Lp90 into oil droplets filled in calcium alginate gels to improve its viability under pasteurization and gastrointestinal conditions.
View Article and Find Full Text PDFLutein has many physiological functions like antioxidation, anti-cancer, and anti-inflammation, which presents good potential in the development of functional food for eye protection. However, the hydrophobicity and harsh environment factors during digestive absorption process will greatly reduce lutein bioavailability. In this study, protein-chitosan complex stabilized Pickering emulsions were prepared, and lutein was encapsulated into corn oil droplets to increase its stability and bioavailability in gastrointestinal digestion.
View Article and Find Full Text PDFProbiotics are living microorganisms that can produce health benefits to the host only when they are ingested in sufficient quantities and reach the intestines active state. However, the external environment that probiotics face for a long time before administration and the low pH environment in the stomach after administration can greatly reduce their activity. In this work, we proposed a simple microfluidic encapsulation strategy to efficiently prepare the probiotics-loaded nanocellulose/alginate delivery system, which can improve the storage stability and gastrointestinal survival rate of probiotics.
View Article and Find Full Text PDF