The clonal dynamics following hematopoietic stem progenitor cell (HSPC) transplantation with busulfan conditioning are of great interest to the development of HSPC gene therapies. Compared with total body irradiation (TBI), busulfan is less toxic and more clinically relevant. We used a genetic barcoded HSPC autologous transplantation model to investigate the impact of busulfan conditioning on hematopoietic reconstitution in rhesus macaques.
View Article and Find Full Text PDFTissue resident (TR) immune cells play important roles in facilitating tissue homeostasis, coordinating immune responses against infections and tumors, and maintaining immunological memory. While studies have shown these cells are distinct phenotypically and functionally from cells found in the peripheral blood (PB), the clonal relationship between these populations across tissues has not been comprehensively studied in primates or humans. We utilized autologous transplantation of rhesus macaque hematopoietic stem and progenitor cells containing high diversity barcodes to track the clonal distribution of T, B, myeloid and natural killer (NK) cell populations across tissues, including liver, spleen, lung, and gastrointestinal (GI) tract, in comparison with PB longitudinally post-transplantation, in particular we focused on NK cells which do not contain endogenous clonal markers and have not been previously studied in this context.
View Article and Find Full Text PDFWe follow a patient with Diamond-Blackfan anemia (DBA) mosaic for a pathogenic RPS19 haploinsufficiency mutation with persistent transfusion-dependent anemia. Her anemia remitted on eltrombopag (EPAG), but surprisingly, mosaicism was unchanged, suggesting that both mutant and normal cells responded. When EPAG was withheld, her anemia returned.
View Article and Find Full Text PDFBackground: The ability to increase heart rate during exercise and other stressors is a key homeostatic feature of the sinoatrial node (SAN). When the physiological heart rate response is blunted, chronotropic incompetence limits exercise capacity, a common problem in patients with heart failure with preserved ejection fraction (HFpEF). Despite its clinical relevance, the mechanisms of chronotropic incompetence remain unknown.
View Article and Find Full Text PDFAcute engraftment arrhythmias (EAs) remain a serious complication of remuscularization therapy. Preliminary evidence suggests that a focal source underlies these EAs stemming from the automaticity of immature pluripotent stem cell-derived cardiomyocytes (PSC-CMs) in nascent myocardial grafts. How these EAs arise though during early engraftment remains unclear.
View Article and Find Full Text PDFAims: Direct remuscularization with pluripotent stem cell-derived cardiomyocytes (PSC-CMs) seeks to address the onset of heart failure post-myocardial infarction (MI) by treating the persistent muscle deficiency that underlies it. However, direct remuscularization with PSC-CMs could potentially be arrhythmogenic. We investigated two possible mechanisms of arrhythmogenesis-focal vs.
View Article and Find Full Text PDFBackground: Characterizing myocardial conduction velocity (CV) in patients with ischemic cardiomyopathy (ICM) and ventricular tachycardia (VT) is important for understanding the patient-specific proarrhythmic substrate of VTs and therapeutic planning. The objective of this study is to accurately assess the relation between CV and myocardial fibrosis density on late gadolinium-enhanced cardiac magnetic resonance imaging (LGE-CMR) in patients with ICM.
Methods: We enrolled 6 patients with ICM undergoing VT ablation and 5 with structurally normal left ventricles (controls) undergoing premature ventricular contraction or VT ablation.
Arrhythm Electrophysiol Rev
July 2019
AF is a progressive disease of the atria, involving complex mechanisms related to its initiation, maintenance and progression. Computational modelling provides a framework for integration of experimental and clinical findings, and has emerged as an essential part of mechanistic research in AF. The authors summarise recent advancements in development of multi-scale AF models and focus on the mechanistic links between alternations in atrial structure and electrophysiology with AF.
View Article and Find Full Text PDF