Bringing sulfonic acid groups into conventional polyethersulfone (PES) materials to prepare PES/sulfonated polyethersulfone (SPES) composite membranes has been shown to markedly enhance the hydrophilicity of the membranes and boost their separation efficiency in water treatment applications. However, membrane fouling due to microbial activity remains a critical challenge in the practical use of these membranes. Despite this, research into the antibacterial capabilities of PES/SPES composite membranes is scarce.
View Article and Find Full Text PDFIn recent years, graphene oxide (GO)-based two-dimensional (2D) laminar membranes have attracted considerable attention because of their unique well-defined nanochannels and deliver a wide range of molecular separation properties and fundamentals. However, the practical application of 2D GO layered membranes suffers from instability in aqueous solutions as the interlayer -spacing of GO membranes is prone to expansion caused by the hydration effect. In this study, the effects of the ethylenediamine (EDA) addition amount on the structure, crosslinking mechanism and separation performance of GO membranes were investigated systematically, and membrane performance was evaluated using water permeability and dye/salt rejection tests.
View Article and Find Full Text PDF