Chemoresistance remains a principal culprit for the treatment failure in colorectal cancer (CRC), especially for patients with recurrent or metastatic disease. Deciphering the molecular basis of chemoresistance may lead to novel therapeutic strategies for this fatal disease. Here, UBR5, an E3 ubiquitin ligase frequently overexpressed in human CRC, is demonstrated to mediate chemoresistance principally by inhibiting ferroptosis.
View Article and Find Full Text PDFLycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry.
View Article and Find Full Text PDFAs an essential micronutrient for humans, the metabolism of copper is fine-tuned by evolutionarily conserved homeostatic mechanisms. Copper toxicity occurs when its concentration exceeds a certain threshold, which has been exploited in the development of copper ionophores, such as elesclomol, for anticancer treatment. Elesclomol has garnered recognition as a potent anticancer drug and has been evaluated in numerous clinical trials.
View Article and Find Full Text PDFTo enhance the biological degradation of volatile organic sulfur compounds, a microbial fuel cell (MFC) system with superior activity is developed for dimethyl disulfide (DMDS) degradation. The MFC achieves a removal efficiency near 100% within 6 h (initial concentration: 90 mg L) and a maximum biodegradation rate constant of 0.743 mM h.
View Article and Find Full Text PDFThe further development of high-performance fluorescent biosensors to image intracellular microRNAs is beneficial to cancer medicine. By virtue of the need for enzymes and hairpin DNA probes, the entropy-driven reaction-assisted signal amplification strategy has shown an enormous potential to accomplish this task. Nevertheless, this good option still meets with poor biostability, low cell uptake efficiency, and unsatisfactory accuracy.
View Article and Find Full Text PDFOwing to their favorable design flexibility and eminent signal amplification ability, DNA nanomachine-supported biosensors have provided an attractive avenue for intracellular fluorescence imaging, especially for DNA walkers. However, this promising option not only suffers from poor controllability but also needs to be supplied with additional driving forces on account of the frequent employment of metal ion-dependent DNAzymes. Aiming at overcoming these obstacles, we introduce some fruitful solutions.
View Article and Find Full Text PDFBenefiting from the outstanding signal amplification effect and the admirable construction flexibility, the currently proposed DNA motors (particularly DNA walkers) based biosensing concepts have provided a forceful fluorescence imaging tool for intracellular detection. Even so, this promising sensing means is not only subject to poor controllability and prone to produce false signals but also requires exogenous powering forces owing to the common employment of DNAzyme. In response to these challenges, we are herein motivated to present some meaningful solving strategies.
View Article and Find Full Text PDFMicrobial electrolysis cell (MEC) with a biocathode could provide extra reaction driving force for gaseous chlorobenzene (CB) removal. In this work, external potentials (-0.1 to -0.
View Article and Find Full Text PDFTaking advantage of outstanding precision in target recognition and -cleavage ability, the recently discovered CRISPR/Cas12a system provides an alternative opportunity for designing fluorescence biosensors. To fully exploit the analytical potential, we introduce here some meaningful concepts. First, the collateral cleavage of CRISPR/Cas12a is efficiently activated in a functional DNA regulation manner and the bottleneck which largely applicable to nucleic acids detection is broken.
View Article and Find Full Text PDFApart from gene editing capacity, the newly discovered CRISPR/Cas systems offer an exciting option for biosensing field because of their excellent target recognition accuracy. However, the currently constructed sensors are not only limited to nucleic acid analysis but also suffer from poor adaptability in complex samples and unsatisfying sensitivity. We herein introduce some advanced concepts to break through these bottlenecks.
View Article and Find Full Text PDFMitochondrial dysfunction is considered as a crucial mechanism of nanomaterial toxicity. Herein, we investigated the effects of polyhydroxylated fullerene (C60(OH)44, fullerenol), a model carbon-based nanomaterial with high water solubility, on isolated mitochondria. Our study demonstrated that fullerenol enhanced the permeabilization of mitochondrial inner membrane to H(+) and K(+) and induced mitochondrial permeability transition (MPT).
View Article and Find Full Text PDFYtterbium (Yb), a widely used rare earth element, is treated as highly toxic to human being and adverseness to plant. Mitochondria play a significant role in plant growth and development, and are proposed as a potential target for ytterbium toxicity. In this paper, the biological effect of Yb(3+) on isolated rice mitochondria was investigated.
View Article and Find Full Text PDFThe effects of lanthanum on heat production of mitochondria isolated from Wistar rat liver were investigated with microcalorimetry; simultaneously, the effects on mitochondrial swelling and membrane potential (Δψ) were determined by spectroscopic methods. La(3+) showed only inhibitory action on mitochondrial energy turnover with IC50 being 55.8 μmol L(-1).
View Article and Find Full Text PDFThe effects of lanthanum and calcium on heat production of mitochondria isolated from Carassius auratus liver were investigated by microcalorimetry, and their effects on mitochondrial swelling and membrane potential (Δψ) were determined by spectroscopic methods. La(3+) showed only inhibitory action on mitochondrial energy turnover with inhibition concentration of 50 % (IC50) being 71.2 μmol L(-1).
View Article and Find Full Text PDFHerein, the biological effects of heavy rare earth ion Er(III) on rice mitochondria were comprehensively investigated mainly by spectroscopic methods. The experimental results demonstrated that Er(III) could lead to the swelling of rice mitochondria, collapse of mitochondrial transmembrane potential, decrease of membrane fluidity, promotion of H(+) permeability and suppression of K(+) permeability. These further indicated that Er(III) could induce the mitochondrial permeability transition (MPT) and the dysfunction of rice mitochondria.
View Article and Find Full Text PDFHere we describe an algorithm for identifying peptides/ proteins of known sequence and unknown peptides from partial spectra generated by an in-source decay (ISD) technique coupled with matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. The identification of protein fragments is processed with a software program called CMATCH, which generates candidate subsequences for both known peptides/proteins and unknown peptides for the major product ions in the spectral range m/z 400-5000 and then matches these to known protein sequences contained in a reference database for the known peptides/proteins. CMATCH, which is compiled for MSDOS or WINDOWS95/NT, has two main advantages: first, the candidate subsequences are generated automatically without the need for supplementary information concerning the distribution of either N-terminal or C-terminal ions in the spectra for both known peptides/proteins and unknown peptides; second, the highest coordinated homologous sequences are picked up automatically from the reference database as the best matches with known peptides/proteins.
View Article and Find Full Text PDF