Publications by authors named "Jiali Hao"

B-cell acute lymphocytic leukemia (B-ALL) is a malignant proliferative B-lymphocyte disease. Although the outcome of B-ALL has greatly improved with combined chemotherapy, immunotherapy, and hematopoietic stem cell transplantation, some patients still experience drug resistance, relapse and a low long-term survival rate, therefore, finding novel approaches to improve the outcome of adult B-ALL patients is critical. Our previous studies revealed that the selective histone deacetylase inhibitor (HDACi) chidamide can inhibit the Wnt/β-catenin signaling pathway by inhibiting MYCN and increasing the expression of DKK3 in B-ALL cells.

View Article and Find Full Text PDF

Background: The overall survival (OS) rate of adult patients suffering from acute myeloid leukaemia (AML) remains unsatisfactory at less than 40%. Current risk stratification systems fail to provide accurate guidelines for precise treatment. Novel biomarkers for predicting prognosis are urgently needed.

View Article and Find Full Text PDF

ZD55-IL-24 is similar but superior to the oncolytic adenovirus ONYX-015, yet the exact mechanism underlying the observed therapeutic effect is still not well understood. Here we sought to elucidate the underlying antitumor mechanism of ZD55-IL-24 in both immunocompetent and immunocompromised mouse model. We find that ZD55-IL-24 eradicates established melanoma in B16-bearing immunocompetent mouse model not through the classic direct killing pathway, but mainly through the indirect pathway of inducing systemic antitumor immunity.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second most diagnosed cancer in Western male population. In this study, we insert mK5 (the mutational kringle5 of human plasminogen) into a DD3-promoted (differential display code 3) oncolytic adenovirus to construct OncoAd.mK5.

View Article and Find Full Text PDF

The Vestigial-Like Family Member 4 (VGLL4) functions as a native inhibitor of cell proliferation and tumor growth through multiple signaling pathways. We first discovered that VGLL4 causes G2/M phase arrest in hepatocellular carcinoma (HCC) cells. Then, we designed a novel survivin-regulated oncolytic adenovirus Ad-sp-VGLL4 carrying the VGLL4 gene.

View Article and Find Full Text PDF

As a promising generation of porous micro-materials, covalent organic frameworks (COFs) have great potentials for applications in separation and adsorption. In the present study, an advanced food-safety inspection method involving COFs as the adsorbents of solid phase extraction (SPE) is proposed for sensitive and accurate determination of target hazardous substances. Typical spherical TpBD COFs with large surface area and superior chemical stability were utilized as adsorbents for the preconcentration of phenolic endocrine disruptors (PEDs), followed by high performance liquid chromatography (HPLC) analysis.

View Article and Find Full Text PDF

Herein, for the first time, the typical porous Covalent Organic Frameworks (COFs) CTpBD with superior chemical stability and large surface area were applied as sorbents for solid phase extraction of trace ions via flow injection followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The well-prepared and fully-characterized CTpBD COFs were filled in solid phase extraction cartridge as novel and robust adsorbents for element analysis. Separation and enrichment of Cr (III), Mn (II), Co (II), Ni (II), Cd (II), V (V), Cu (II), As (III), Se (IV), and Mo (VI) was then carried out, and the contents were measured by ICP-MS.

View Article and Find Full Text PDF

With unique 2D structures and intriguing physicochemical properties, various types of transition metal dichalcogenides (TMDCs) have attracted much attention in many fields including nanomedicine. Hence, it is of great importance to carefully study the in vivo biodistribution, excretion, and toxicology profiles of different TMDCs, and hopefully to identify the most promising type of TMDCs with low toxicity and fast excretion for further biomedical applications. Herein, the in vivo behaviors of three representative TMDCs including molybdenum dichalcogenides (MoS), tungsten dichalcogenides (WS), and titanium dichalcogenides (TiS) nanosheets are systematically investigated.

View Article and Find Full Text PDF

Molybdenum oxide (MoOx) nanosheets with high near-infrared (NIR) absorbance and pH-dependent oxidative degradation properties were synthesized, functionalized with polyethylene glycol (PEG), and then used as a degradable photothermal agent and drug carrier. The nanosheets, which are relatively stable under acidic pH, could be degraded at physiological pH. Therefore, MoOx-PEG distributed in organs upon intravenous injection would be rapidly degraded and excreted without apparent in vivo toxicity.

View Article and Find Full Text PDF

Recently, magnetic photothermal nanomaterials have emerged as a new class of bio-nanomaterials for application in cancer diagnosis and therapy. Hence, we developed a new kind of magnetic nanomaterials, iron diselenide (FeSe(2)) nanoparticles, for multimodal imaging-guided photothermal therapy (PTT) to improve the efficacy of cancer treatment. By controlling the reaction time and temperature, FeSe(2) nanoparticles were synthesized by a simple solution-phase method.

View Article and Find Full Text PDF