Publications by authors named "Jiale Diao"

Graves' ophthalmopathy (GO) is an inflammatory autoimmune disease that affects the eyes. It can significantly alter the quality of life in patients because of its distinctive pathological appearance and the effect on vision. To date, the exact pathological mechanism of GO has not been explicitly discovered.

View Article and Find Full Text PDF

Thyroid associated ophthalmopathy (TAO) is an orbital autoimmune inflammatory disease that is commonly associated with thyroid dysfunction. Although the etiology of TAO is unclear, ROS accumulation and oxidative stress have been closely linked to the pathogenesis of TAO. Ferroptosis is an iron-dependent programmed cell death characterized by intracellular labile iron levels, excessive accumulation of reactive oxygen species (ROS) and lipid peroxidation.

View Article and Find Full Text PDF

Thyroid-associated ophthalmopathy (TAO) is a complicated orbitopathy related to dysthyroid, which severely destroys the facial appearance and life quality without medical interference. The diagnosis and management of thyroid-associated ophthalmopathy are extremely intricate, as the number of professional ophthalmologists is limited and inadequate compared with the number of patients. Nowadays, medical applications based on artificial intelligence (AI) algorithms have been developed, which have proved effective in screening many chronic eye diseases.

View Article and Find Full Text PDF

Purpose: Berberine (BBR), an alkaloid produced by a traditional Chinese plant, was recently attributed multiple effects on lipometabolism, inflammation, and fibrosis. Thyroid-associated ophthalmopathy (TAO) is highly associated with these pathologic changes. Thus, we aimed to examine the potential therapeutic effect of BBR in an in vitro model of TAO.

View Article and Find Full Text PDF

IgG4-related disease (IgG4-RD) affects multiple organs and is characterized by immune-mediated inflammation and fibrosis; IgG-RD affecting orbital tissue is known as IgG4-related ophthalmic disease (IgG4-ROD). This research is aimed at exploring whether symptom duration and common serologic factors, such as IgG, IgE, and eosinophils, are potential risk factors for IgG4-ROD patient relapse after surgery and identifying possible causes of the positive correlation between symptom duration and relapse. This retrospective cohort study included 40 IgG4-ROD patients after surgery.

View Article and Find Full Text PDF

The progress and achievements that have been made in tear proteomics in thyroid-associated ophthalmopathy (TAO) are critical for exploring the pathogenesis of TAO and investigating potential therapeutic targets. However, the tear proteomics of orbital decompression for disfiguring exophthalmos in inactive TAO have yet to be properly investigated. In the present study, orbital decompression was performed to repair disfiguring exophthalmos in patients with inactive TAO.

View Article and Find Full Text PDF

Our study aimed to investigate the differentially expressed circRNAs and their potential roles in orbital adipose/connective tissue from patients with thyroid-associated ophthalmopathy (TAO). The orbital adipose/connective tissue samples from three TAO patients and three control individuals were collected for RNA sequencing after depletion of ribosomal RNA. Differentially expressed mRNAs and up-regulated circRNAs were used for co-expression analysis.

View Article and Find Full Text PDF

Purpose: Transforming growth factor-β (TGF-β), recognized as a crucial factor in regulating fibrosis and tissue remodeling, plays a role in thyroid-associated ophthalmopathy (TAO). Pentraxin-3 (PTX3), a member of pentraxins, was recently implicated in many autoimmune and fibrotic diseases. Thus, we hypothesize if there is a potential correlation between TGF-β and PTX3 in orbital fibroblasts (OFs).

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a debilitating disease, effective prevention measures are in desperate need. Our previous work found that hyperbaric oxygen (HBO) preconditioning significantly protected rats from SCI after stimulated diving, and in vitro study further testified that HBO protected primary cultured rat spinal neurons from oxidative insult and oxygen glucose deprivation injury via heat shock protein (HSP) 32 induction. In this study, underlying molecular mechanisms were further investigated.

View Article and Find Full Text PDF