Publications by authors named "Jiajun Mao"

Rapeseed (Brassica napus L.) is a major oilseed crop in the middle and lower reaches of the Yangtze River in China. However, it is susceptible to waterlogging stress.

View Article and Find Full Text PDF

Natural structural materials typically feature complex hierarchical anisotropic architectures, resulting in excellent damage tolerance. Such highly anisotropic structures, however, also provide an easy path for crack propagation, often leading to catastrophic fracture as evidenced, for example, by wood splitting. Here, we describe the weakly anisotropic structure of (ginkgo) seed shell, which has excellent crack resistance in different directions.

View Article and Find Full Text PDF

To date, multifunctional sensors have aroused widespread concerns owing to their vital roles in the healthcare area. However, there are still significant challenges in the fabrication of functionalized integrated devices. In this work, hydrophobic-hydrophilic patterns are constructed on polyester-spandex-blended knitted fabric surface by the chemical click method, enabling accurate deposition of functionalized materials for sensitive and stable motion and humidity sensing.

View Article and Find Full Text PDF

As a growing hot research topic, manufacturing smart switchable surfaces has attracted much attention in the past a few years. The state-of-the-art study on reversibly switchable wettability of smart surfaces has been presented in this systematic review. External stimuli are brought about to render the alteration in chemical conformation and surface morphology to drive the wettability switch.

View Article and Find Full Text PDF

Current lithium-ion battery technology is approaching the theoretical energy density limitation, which is challenged by the increasing requirements of ever-growing energy storage market of electric vehicles, hybrid electric vehicles, and portable electronic devices. Although great progresses are made on tailoring the electrode materials from methodology to mechanism to meet the practical demands, sluggish mass transport, and charge transfer dynamics are the main bottlenecks when increasing the areal/volumetric loading multiple times to commercial level. Thus, this review presents the state-of-the-art developments on rational design of the commercialization-driven electrodes for lithium batteries.

View Article and Find Full Text PDF

Sluggish kinetics of the multielectron transfer process is still a bottleneck for efficient oxygen evolution reaction (OER) activity, and the reduction of reaction overpotential is crucial to boost reaction kinetics. Herein, a correlation between the OER overpotential and the cobalt-based electrode composition in a "Microparticles-in-Spider Web" (MSW) superstructure electrode is revealed. The overpotential is dramatically decreased first and then slightly increased with the continuous increase ratio of Co/Co O in the cobalt-based composite electrode, corresponding to the dynamic change of electrochemically active surface area and charge-transfer resistance with the electrode composition.

View Article and Find Full Text PDF

Superwettable patterns with superhydrophobic and superhydrophilic units have the capacity of enriching and absorbing microdroplets for multifunctional biosensing. Combining the advantages of superwettable micropatterns and a rapid click reaction, we first prepared a film using propargyl methacrylate-ethylene dimethacrylate and then created a superhydrophobic-superhydrophilic micropattern by a rapid thiol-yne click reaction. Due to the high wettability contrast, water droplets tend to be anchored in the superhydrophilic region.

View Article and Find Full Text PDF

Particulate matter (PM) pollution has posed great threat to human health. This calls for versatile protection or treatment devices that are both efficient and easy to use. Herein, we have rationally designed a novel reusable bilayer fibrous filter consisting of electrospun superhydrophobic poly(methylmethacrylate)/polydimethylsiloxane fibers as the barrier for moisture ingression and superhydrophilic chitosan fibers for a PM capture efficiency of over 96% at optical transmittance of 86%.

View Article and Find Full Text PDF

Particulate matter (PM) pollution poses a serious threat to the environment and public health. Capture of PM is best performed at the emission source, such as car exhaust exit points, although it is a challenge for filters to work under harsh conditions of high temperatures and flow rate. Here we designed a thermally stable PM filter by in situ anchoring of zeolite imidazole framework-8 (ZIF-8) on a three-dimensional (3D) network of reduced graphene oxide aerogel (rGA) through natural drying.

View Article and Find Full Text PDF

In this work, the treatment of textile wastewater by a facile and high-efficiency technology using eco-friendly as a biosorbent was investigated. We measured physical changes (weight, size) during the formation and growth of fungus pellets and the pH values that influence the adsorption performance and biosorption mechanism. Three acid anionic dyes containing Acid Orange 56, Acid Blue 40 and Methyl Blue were chosen as model dyes to investigate batch adsorption efficiency.

View Article and Find Full Text PDF
Article Synopsis
  • Multifuntional fabrics with special wettability have gained attention for their applications in both research and industry, particularly in creating super-antiwetting coatings on cellulose-based materials like fabrics and paper.
  • The review highlights significant applications such as oil-water separation, self-cleaning, and microfluidic manipulation, emphasizing the functionalities and durability of these coatings.
  • The text also addresses challenges in the field and discusses future prospects for advancing these technologies.
View Article and Find Full Text PDF