Publications by authors named "Jiajun Chai"

Communication-based multiagent reinforcement learning (MARL) has shown promising results in promoting cooperation by enabling agents to exchange information. However, the existing methods have limitations in large-scale multiagent systems due to high information redundancy, and they tend to overlook the unstable training process caused by the online-trained communication protocol. In this work, we propose a novel method called neighboring variational information flow (NVIF), which enhances communication among neighboring agents by providing them with the maximum information set (MIS) containing more information than the existing methods.

View Article and Find Full Text PDF

Deep learning techniques have made great progress in the field of target detection in recent years, making it possible to accurately identify plants in complex environments in agricultural fields. This project combines deep learning algorithms with spraying technology to design a machine vision precision real-time targeting spraying system for field scenarios. Firstly, the overall structure scheme of the system consisting of image acquisition and recognition module, electronically controlled spray module and pressure-stabilized pesticide supply module was proposed.

View Article and Find Full Text PDF

Multiagent reinforcement learning methods, such as VDN, QMIX, and QTRAN, that adopt centralized training with decentralized execution (CTDE) framework have shown promising results in cooperation and competition. However, in some multiagent scenarios, the number of agents and the size of the action set actually vary over time. We call these unshaped scenarios, and the methods mentioned above fail in performing satisfyingly.

View Article and Find Full Text PDF