The structural features of bone engineering scaffolds are expected to exhibit osteoinductive behavior and promote cell adhesion, proliferation, and differentiation. In the present study, we employed synthesized ordered mesoporous calcium-magnesium silicate (om-CMS) and polybutylene succinate (PBSu) to develop a novel scaffold with potential applications in osseous tissue engineering. The characteristics, in vitro bioactivity of om-CMS/PBSu scaffold, as well as the cellular responses of MC3T3-E1 cells to the composite were investigated.
View Article and Find Full Text PDFBioactive mesoporous diopside (m-DP) and poly(L-lactide) (PLLA) composite scaffolds with mesoporous/macroporous structure were prepared by the solution-casting and particulate-leaching method. The results demonstrated that the degradability and bioactivity of the mesoporous/macroporous scaffolds were significantly improved by incorporating m-DP into PLLA, and that the improvement was m-DP content-dependent. In addition, the scaffolds containing m-DP showed the ability to neutralize acidic degradation products and prevent the pH from dropping in the solution during the soaking period.
View Article and Find Full Text PDF