Int J Radiat Oncol Biol Phys
November 2024
Objective: The aim of this study was to evaluate the feasibility and plan quality of spot-scanning proton arc therapy (SPArc) using a synchrotron-accelerator-based proton therapy system compared to intensity-modulated proton therapy (IMPT).
Approach: Five representative disease sites, including head and neck, lung, liver, brain chordoma, and prostate cancers, were retrospectively selected. Both IMPT and SPArc plans are generated with the HITACHI ProBEAT PBS system's minimum MU constraints and physics beam model.
In proton pencil beam scanning (PBS) continuous delivery, the beam is continuously delivered without interruptions between spots. For synchrotron-based systems, the extracted beam current exhibits a spill structure, and recent publications on beam current measurements have demonstrated significant fluctuations around the nominal values. These fluctuations potentially lead to dose deviations from those calculated assuming a stable beam current.
View Article and Find Full Text PDFBackground: Rescanning is a common technique used in proton pencil beam scanning to mitigate the interplay effect. Advances in machine operating parameters across different generations of particle therapy systems have led to improvements in beam delivery time (BDT). However, the potential impact of these improvements on the effectiveness of rescanning remains an underexplored area in the existing research.
View Article and Find Full Text PDFA survey was designed to inquire about the practice of proton SBRT treatment for prostate cancer. The survey was distributed to all 30 proton therapy centers in the United States that participate in the National Clinical Trial Network in Feb. 2023.
View Article and Find Full Text PDFStereotactic body radiation therapy (SBRT) and hypofractionation using pencil-beam scanning (PBS) proton therapy (PBSPT) is an attractive option for thoracic malignancies. Combining the advantages of target coverage conformity and critical organ sparing from both PBSPT and SBRT, this new delivery technique has great potential to improve the therapeutic ratio, particularly for tumors near critical organs. Safe and effective implementation of PBSPT SBRT/hypofractionation to treat thoracic malignancies is more challenging than the conventionally fractionated PBSPT because of concerns of amplified uncertainties at the larger dose per fraction.
View Article and Find Full Text PDF. To enhance an in-house graphic-processing-unit accelerated virtual particle (VP)-based Monte Carlo (MC) proton dose engine (VPMC) to model aperture blocks in both dose calculation and optimization for pencil beam scanning proton therapy (PBSPT)-based stereotactic radiosurgery (SRS)..
View Article and Find Full Text PDFBackground: Accurate and efficient dose calculation is essential for on-line adaptive planning in proton therapy. Deep learning (DL) has shown promising dose prediction results in photon therapy. However, there is a scarcity of DL-based dose prediction methods specifically designed for proton therapy.
View Article and Find Full Text PDF. To investigate the impact of scan path optimization on the dose accuracy and beam delivery time (BDT) of proton pencil beam scanning in the dose-driven continuous scanning (DDCS)..
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
February 2024
Purpose: We present the first study to investigate Large Language Models (LLMs) in answering radiation oncology physics questions. Because popular exams like AP Physics, LSAT, and GRE have large test-taker populations and ample test preparation resources in circulation, they may not allow for accurately assessing the true potential of LLMs. This paper proposes evaluating LLMs on a highly-specialized topic, radiation oncology physics, which may be more pertinent to scientific and medical communities in addition to being a valuable benchmark of LLMs.
View Article and Find Full Text PDFPurpose: To develop a DL-based PBSPT dose prediction workflow with high accuracy and balanced complexity to support on-line adaptive proton therapy clinical decision and subsequent replanning.
Methods: PBSPT plans of 103 prostate cancer patients and 83 lung cancer patients previously treated at our institution were included in the study, each with CTs, structure sets, and plan doses calculated by the in-house developed Monte-Carlo dose engine. For the ablation study, we designed three experiments corresponding to the following three methods: 1) Experiment 1, the conventional region of interest (ROI) method.
Background: Discrete spot scanning (DSS) is the commonly used method for proton pencil beam scanning (PBS). There is lack of data on the dose-driven continuous scanning (DDCS).
Purpose: To investigate delivery benefits and dosimetric implications of DDCS versus DSS for PBS systems.
Background: Mechanical accuracy should be verified before implementing a proton stereotactic radiosurgery (SRS) program. Linear accelerator (Linac)-based SRS systems often use electronic portal imaging devices (EPIDs) to verify beam isocentricity. Because proton therapy systems do not have EPID, beam isocentricity tests of proton SRS may still rely on films, which are not efficient.
View Article and Find Full Text PDFPurpose: To investigate the beam delivery time (BDT) reduction due to the improvement of machine parameters for Hitachi synchrotron-based proton PBS system.
Methods: BDTs for representative treatment plans were calculated to quantitatively estimate the BDT improvement from our 2015 system at Mayo Clinic in Arizona to our system to be implemented in 2025 at Mayo Clinic in Florida, and to a hypothetical future system. To specifically assess how each incremental improvement in the operating parameters reduced the total BDT, for each plan, we simulated the BDT 10,368 times with various settings of the nine different operating parameters.
The purpose of this work is to investigate collimating individual proton beamlets from a dosimetric perspective and to introduce a new device concept, the spot scanning aperture (SSA). The SSA consists of a thin aperture with a small cylindrical opening attached to a robotics system, which allows the aperture to follow and align with individual beamlets during spot delivery. Additionally, a range shifter is incorporated (source-side) for treating shallow depths.
View Article and Find Full Text PDFBackground: Parallel-opposed lateral beams are the conventional beam arrangements in proton therapy for prostate cancer. However, when considering linear energy transfer (LET) and RBE effects, alternative beam arrangements should be investigated.
Purpose: To investigate the dose and dose averaged LET (LET ) impact of using new beam arrangements rotating beams 5°-15° posteriorly to the laterals in prostate cancer treated with pencil-beam-scanning (PBS) proton therapy.
To investigate synchrotron-based proton pencil beam scanning (PBS) beam delivery time (BDT) using novel continuous scanning mode.A BDT calculation model was developed for the Hitachi particle therapy system. The model was validated against the measured BDT of 36 representative clinical proton PBS plans with discrete spot scanning (DSS) in the current Hitachi proton therapy system.
View Article and Find Full Text PDFBackground: A new compact superconducting synchrocyclotron single-room proton solution delivers pulsed proton beams to each spot through several irradiation bursts calculated by an iterative layer delivery algorithm. Such a mechanism results in a new beam parameter, burst switching time (BST) in the total beam delivery time (BDT) which has never been studied before. In this study, we propose an experimental approach to build an accurate BDT and sequence prediction model for this new proton solution.
View Article and Find Full Text PDF