Publications by authors named "Jiajia Wen"

In unconventional superconductors, coupled charge and lattice degrees of freedom can manifest in ordered phases of matter that are intertwined. In the cuprate family, fluctuating short-range charge correlations can coalesce into a longer-range charge density wave (CDW) order which is thought to intertwine with superconductivity, yet the nature of the interaction is still poorly understood. Here, by measuring subtle lattice fluctuations in underdoped YBaCuO on quasi-static timescales (thousands of seconds) through X-ray photon correlation spectroscopy, we report sensitivity to both superconductivity and CDW.

View Article and Find Full Text PDF

With an electron-deficient rigid planar structure and excellent π-π stacking ability, hexaazatriphenylene (HAT) and its derivatives are widely used as basic building blocks for constructing covalent organic frameworks (COFs), components of organic light-emitting diodes and solar cells, and electrode materials for lithium-ion batteries (LIBs). Here, a HAT derivative, hexaazatriphenylenehexacarbonitrile, is explored as an anode material for LIBs. The HAT anode exhibited high initial reversible capacities of 672 mA h g at 100 mA g and 550 mA h g at 400 mA g and stable cycling with a capacity of 503 mA h g after 1000 cycles at 400 mA g corresponding to a capacity retention of 91.

View Article and Find Full Text PDF

Electrostatic gating has emerged as a powerful technique for tailoring the magnetic properties of two-dimensional (2D) magnets, offering exciting prospects including enhancement of magnetic anisotropy, boosting Curie temperature, and strengthening exchange coupling effects. Here, we focus on electrical control of the ferromagnetic resonance of the quasi-2D Kagome magnet Cu(1,3-bdc). By harnessing an electrostatic field through ionic liquid gating, significant shifts are observed in the ferromagnetic resonance field in both out-of-plane and in-plane measurements.

View Article and Find Full Text PDF

Objective: Explore the causal relationship between the ovarian cyst and depression using a two-sample Mendelian randomization approach (MR).

Methods: Based on data pooled from genome-wide association studies, genetic variants of the ovarian cyst and depression were selected as instrumental variables, as well as the Mendelian randomization analysis was conducted using inverse variance weighted (IVW) as the main analysis method and MR-Egger regression analysis, MR-PRESSO and other sensitivity analysis methods as supplements.

Results: The IVW analysis showed a direct causal association between ovarian cysts and depression (OR=1.

View Article and Find Full Text PDF

Although Cu is ubiquitous, the relativistic destabilization of the 5d orbitals makes the isoelectronic Au exceedingly rare, typically stabilized only through Au-Au bonding or by using redox non-innocent ligands. Here we report the perovskite CsAuAuCl, an extended solid with mononuclear Au sites, which is stable to ambient conditions and characterized by single-crystal X-ray diffraction. The 2+ oxidation state of Au was assigned using Au Mössbauer spectroscopy, electron paramagnetic resonance, and magnetic susceptibility measurements, with comparison to paramagnetic and diamagnetic analogues with Cu and Pd, respectively, as well as to density functional theory calculations.

View Article and Find Full Text PDF

Purpose Of Review: Resistant starch has received much attention recently as a healthy carbohydrate component of the diet. Resistant starch is not digested in the small intestine and can thus affect the gut microbiota of the host because of its fermentability. This review summarizes the interactions along the resistant starch-gut microbiota-host axis to help understand the health effects of resistant starch.

View Article and Find Full Text PDF

The rapid emergence of highly transmissible SARS-CoV-2 variants poses serious threat to the efficacy of vaccines and neutralizing antibodies. Thus, there is an urgent need to develop new and effective inhibitors against SARS-CoV-2 and future outbreaks. Here, we have identified a series of glycopeptide antibiotics teicoplanin derivatives that bind to the SARS-CoV-2 spike (S) protein, interrupt its interaction with ACE2 receptor and selectively inhibit viral entry mediated by S protein.

View Article and Find Full Text PDF

The law and mechanism of the interaction between polysaccharides and pattern recognition receptors (PRRs) has been unclear. Herein, three glucomannans with different structures were selected to explore the universal mechanism for PRRs to recognize glucomannans. Screening results showed that the silence of TLR4 but not TLR2 severely blocked the production of inflammatory cytokines and the transduction of signal pathways.

View Article and Find Full Text PDF

Numerous kinds of bioactive polysaccharides are identified as having intestinal immunomodulatory activity; however, the ways in which the different polysaccharides work differ. Therefore, we selected nine representative bioactive polysaccharides, including xanthan gum, inulin, guar gum, arabinogalactan, carrageenan, glucomannan, araboxylan, xylan, and fucoidan, and compared their intestinal immunomodulatory mechanisms. A cyclophosphamide (CTX)-induced immunosuppressed model was used in this experiment, and the effects of these polysaccharides on the number of T cells in the intestinal mucosa, expression of transcription factors and inflammatory factors, intestinal metabolome and gut microbiota were compared and discussed.

View Article and Find Full Text PDF

Low-dimensional metal halides exhibit strong structural and electronic anisotropies, making them candidates for accessing unusual electronic properties. Here, we demonstrate pressure-induced quasi-one-dimensional (quasi-1D) metallicity in δ-CsSnI. With the application of pressure up to 40 GPa, the initially insulating δ-CsSnI transforms to a metallic state.

View Article and Find Full Text PDF

Hyperlipidemia can directly cause metabolic diseases that seriously endanger disorder and metabolism and gut health. Tea polyphenol (TP) and epigallocatechin gallate (EGCG) was found to improve blood lipid levels and gut microbiota. This study aimed to investigate the effects of TP and EGCG on alleviating hyperlipidemia and liver fat accumulation with physiology, genomics, and metabolomics.

View Article and Find Full Text PDF

With the increasing prevalence of drug-resistant variants, novel potent HIV-1 protease inhibitors with broad-spectrum antiviral activity against multidrug-resistant causative viruses are urgently needed. Herein, we designed and synthesized a new series of HIV-1 protease inhibitors with phenols or polyphenols as the P2 ligands and a variety of sulfonamide analogs as the P2' ligands. A number of these new inhibitors showed superb enzymatic inhibitory activity and antiviral activity.

View Article and Find Full Text PDF

Electron-phonon coupling was believed to govern the carrier transport in halide perovskites and related phases. Here we demonstrate that electron-electron interaction enhanced by Cs-involved electron redistribution plays a direct and prominent role in the low-temperature electrical transport of compressed CsPbI and renders Fermi liquid (FL)-like behavior. By compressing δ-CsPbI to 80 GPa, an insulator-semimetal-metal transition occurs, concomitant with the completion of a slow structural transition from the one-dimensional Pnma (δ) phase to a three-dimensional Pmn2 (ε) phase.

View Article and Find Full Text PDF

Investigation on how nature produces natural compounds with chemical and biological diversity at the genetic level offers inspiration for the discovery of new natural products and even their biological targets. The polyketide rumbrin () is a lipid peroxide production and calcium accumulation inhibitor, which contains a chlorinated pyrrole moiety that is a rare chemical feature in fungal natural products. Here, we identify the biosynthetic gene cluster (BGC) of and its isomer 12-rumbrin () from DSM3193, and elucidate their biosynthetic pathway based on heterologous expression, chemical complementation, and isotopic labeling.

View Article and Find Full Text PDF

Macrophage activation is involved in the outcome of many diseases and is recognized as one of the best targets for disease intervention. Glucomannans had shown promising immunomodulatory potential. Herein, the activation performance of macrophages by glucomannans from different sources was thoroughly investigated.

View Article and Find Full Text PDF

The dearomative functionalization of aromatic compounds represents a fascinating but challenging transformation, as it typically needs to overcome a great kinetic barrier. Here, a catalyst-free dearomative rearrangement of o-nitrophenyl alkyne is successfully established by leveraging the remote oxygen transposition and a weak N-O bond acceleration. This reaction features high atom-, step- and redox-economy, which provides a divergent entry to a series of biologically important benzazepines and bridged polycycloalkanones.

View Article and Find Full Text PDF

We report results of low-temperature heat-capacity, magnetocaloric-effect, and neutron-diffraction measurements of TmVO, an insulator that undergoes a continuous ferroquadrupolar phase transition associated with local partially filled 4 orbitals of the thulium (Tm[Formula: see text]) ions. The ferroquadrupolar transition, a realization of Ising nematicity, can be tuned to a quantum critical point by using a magnetic field oriented along the axis of the tetragonal crystal lattice, which acts as an effective transverse field for the Ising-nematic order. In small magnetic fields, the thermal phase transition can be well described by using a semiclassical mean-field treatment of the transverse-field Ising model.

View Article and Find Full Text PDF

We explore spin dynamics in Cu(1,3-bdc), a quasi-2D topological magnon insulator. The results show that the thermal evolution of the Landé factor () is anisotropic: decreases while increases with increasing temperature . Moreover, the anisotropy of the factor (Δ) and the anisotropy of saturation magnetization (Δ) are correlated below 4 K, but they diverge above 4 K.

View Article and Find Full Text PDF

Schlafen-5 (SLFN5) is an interferon-induced protein of the Schlafen family, which are involved in immune responses and oncogenesis. To date, little is known regarding its anti-HIV-1 function. Here, the authors report that overexpression of SLFN5 inhibits HIV-1 replication and reduces viral mRNA levels, whereas depletion of endogenous SLFN5 promotes HIV-1 replication.

View Article and Find Full Text PDF

We use ^{79}Br nuclear quadrupole resonance (NQR) to demonstrate that ultraslow lattice dynamics set in below the temperature scale set by the Cu-Cu superexchange interaction J (≃160  K) in the kagome lattice Heisenberg antiferromagnet Zn-barlowite. The lattice completely freezes below 50 K, and ^{79}Br NQR line shapes become twice broader due to increased lattice distortions. Moreover, the frozen lattice exhibits an oscillatory component in the transverse spin echo decay, a typical signature of pairing of nuclear spins by indirect nuclear spin-spin interaction.

View Article and Find Full Text PDF

Resistant starches (RS), which are considered as one of the dietary fibers, could exert widely beneficial impacts, reduce fat accumulation, show significant effects on regulating blood glucose metabolism and insulin levels, and have protective effects on the gut. Five types of RS have different responses to chronic disease by modulating gut microbiota. Short-chain fatty acids are the linkage between gut microbiota and RS, and RS could improve the metabolism of gut microbiota as well as increase the abundance of beneficial microbes in the gut.

View Article and Find Full Text PDF

spp. can exert plant growth-promoting effects and biocontrol effects after effective colonization, and bacterial chemotaxis toward plant root exudates is the initial step to colonize. Under biotic stress, plants are able to alter their root exudates to attract or avoid different types of microbes.

View Article and Find Full Text PDF

Various structural types of polysaccharides are recognized by toll-like receptor 4 (TLR4). However, the mechanism of interaction between the polysaccharides with different structures and TLR4 is unclarified. This review summarized the primary structure of polysaccharides related to TLR4, mainly including molecular weight, monosaccharide composition, glycosidic bonds, functional groups, and branched-chain structure.

View Article and Find Full Text PDF

Upon the basis of both possible ligand-binding site interactions and the uniformity of key residues in active sites, a novel class of HIV-1 PR/RT dual inhibitors was designed and evaluated. Cinnamic acids or phenylpropionic acids with more flexible chain and smaller steric hindrance were introduced into the inhibitors, giving rise to significant improvement in HIV-1 RT inhibitory activity by one or two orders of magnitude, with comparable or even improved potency against PR at the same time, compared with coumarin anologues in our previous studies. Among these inhibitors, 38d displayed a 19-fold improvement in anti-PR activity with IC value of 0.

View Article and Find Full Text PDF

Obesity is a chronic disease characterized by overweight resulting from fat accumulation, along with disturbance of metabolism and gut microbiota. Fermentation, as a green processing method, is beneficial for improving the nutrition capacity of food components. Polysaccharides are considered as one of the important components in food and are also potential supplements for anti-obesity treatment.

View Article and Find Full Text PDF