Publications by authors named "Jiajia Tan"

Background: Interpersonal security is an important psychological factor influencing social media use. However, little is known about the mediating and moderating mechanisms linking Interpersonal security and social media dependence.

Objective: The present study explored the mediating role of negative rumination between interpersonal safety and social media dependence, as well as cohort differences in sibling conditions as moderators.

View Article and Find Full Text PDF

Common corn rust and southern corn rust, two typical maize diseases during growth stages, require accurate differentiation to understand their occurrence patterns and pathogenic risks. To address this, a specialized Maize-Rust model integrating a SimAM module in the YOLOv8s backbone and a BiFPN for scale fusion, along with a DWConv for streamlined detection, was developed. The model achieved an accuracy of 94.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection.

View Article and Find Full Text PDF

Thiol-maleimide (MI) chemistry is a cornerstone of bioconjugation strategies, particularly in the development of drug delivery systems. The cyclic arginine-glycine-aspartic acid (cRGD) peptide, recognized for its ability to target the integrin αβ, is commonly employed to functionalize maleimide-bearing nanoparticles (NPs) for fabricating cRGD-functionalized nanomedicines. However, the impact of cRGD density on tumor targeting efficiency remains poorly understood.

View Article and Find Full Text PDF

The entropy mediated temperature-structure evolution has attracted significant interest, which is used for the development of functional alloys and ceramics. But such strategy has not yet been demonstrated for development of non-metallic glasses. Herein, the successful application of the entropy engineering concept to non-metallic glass to manipulate its in situ crystallization process is demonstrated.

View Article and Find Full Text PDF

The lipophilic, bioaccumulative, persistent nature of Tetrabromobisphenol A (TBBPA) contributes to its widespread detection in various environmental media, posing significant negative implications for the living environment and human health. In this study, a reduction system and a reduction-oxidation sequential reaction system were developed using a magnetic core-shell bimetallic amendment (S-Fe/Co@GC) to investigate the degradation and mineralization properties of TBBPA. Additionally, the degradation mechanism and degradation pathway of TBBPA in various systems were analyzed.

View Article and Find Full Text PDF

The self-assembly of sequence-defined polymers (SDPs) enables the formation of a diverse array of nanostructures; however, the construction of complex hierarchical structures via thermal annealing from SDPs remains relatively unexplored. In this study, two series of oligourethanes, 2Cit-B-OH and 2Cit-B-OH, were synthesized to investigate their thermal annealing behaviors. Nanorod clusters were generated from 2Cit-B-OH in a mixture of 1,4-dioxane and toluene, whereas 2Cit-B-OH formed nanosheets after thermal annealing.

View Article and Find Full Text PDF

The depth-dependent dynamics of dissolved organic matter (DOM) structure and humification in an artificial lake limits the understanding of lake eutrophication and carbon cycling. Using fluorescence regional integration (FRI) and parallel factor analysis (PARAFAC) models to analyze the 3D fluorescence spectroscopy dataset, we revealed the depth-dependent structure and vertical distribution of DOM in the estuarine and center regions of Lake Hongfeng. The percentage fluorescence response () showed humic acid is an important part of DOM in Lake Hongfeng.

View Article and Find Full Text PDF

To emulate the ordered arrangement of monomer units found in natural macromolecules, single-unit monomer insertion (SUMI) have emerged as a potent technique for synthesizing sequence-controlled vinyl polymers. Specifically, numerous applications necessitate vinyl polymers encompassing both radically and cationically polymerizable monomers, posing a formidable challenge due to the distinct thiocarbonylthio end-groups required for efficient control over radical and cationic SUMIs. Herein, we present a breakthrough in the form of interconvertible radical and cationic SUMIs achieved through the manipulation of thiocarbonylthio end-groups.

View Article and Find Full Text PDF

Ice has been suggested to have played a significant role in the origin of life partly owing to its ability to concentrate organic molecules and promote reaction efficiency. However, the techniques for studying organic molecules in ice are absorption-based, which limits the sensitivity of measurements. Here we introduce an emission-based method to study organic molecules in water ice: the phosphorescence displays high sensitivity depending on the hydration state of an organic salt probe, acridinium iodide (ADI).

View Article and Find Full Text PDF

Background: Severe myocarditis is often accompanied by cardiac fibrosis, but the underlying mechanism has not been fully elucidated. CXCL4 is a chemokine that has been reported to have pro-inflammatory and profibrotic functions. The exact role of CXCL4 in cardiac fibrosis remains unclear.

View Article and Find Full Text PDF

Polymeric nanoparticles (NPs) have been extensively designed for theranostic agent delivery. Previous methods for tracking their biological behavior and assessing theranostic efficacy heavily rely on fluorescence or isotope labeling. However, these labeling techniques may alter the physicochemical properties of the labeled NPs, leading to inaccurate biodistribution information.

View Article and Find Full Text PDF

Precise activation of polymer nanoparticles at lesion sites is crucial to achieve favorable therapeutic efficacy. However, conventional endogenous stimuli-responsive polymer nanoparticles probably suffer from few triggers to stimulate the polymer degradation and subsequent functions. Here, we describe oxidation-responsive poly(ferrocene) amphiphiles containing phenylboronic acid ester and ferrocene as the repeating backbone units.

View Article and Find Full Text PDF

Background: To address the lack of mental health practitioners in developing countries, the current study explored the feasibility of a newly developed self-guided digital intervention program TEA (training for emotional adaptation) in alleviating depressive and anxiety symptoms, as one of a few studies which adapted from theoretical models with effective intervention techniques.

Methods: The first part of this study involved 11 professional mental health practitioners giving feedback on the feasibility of the TEA; while the second part involved a mixed-method single-arm study with 32 participants recruited online, who went through the seven intervention sessions within 14 days. The questionnaires were collected before, after, 14 days after, and 30 days after intervention.

View Article and Find Full Text PDF

Amphiphilic self-immolative polymers (SIPs) can achieve complete degradation solely through one triggerable event, which potentially optimize the blood clearance and uncontrollable/inert degradability for therapeutic nanoparticles. Herein, we report self-immolative amphiphilic poly(ferrocenes), BP -Fc, composed by self-immolative backbone and aminoferrocene (AFc) side chains as well as end-capping poly(ethylene glycol) monomethyl ether. Upon triggering by tumor acidic milieu, the BP -Fc nanoparticles readily degrade to release azaquinone methide (AQM) moieties, which can rapidly deplete intracellular glutathione (GSH) to cascade release AFc.

View Article and Find Full Text PDF

Soluble interleukin 1 receptor-like 1 (sST2) is a novel predictor of poor outcomes, which is involved in inflammatory response and fibrosis of myocarditis. Cellular senescence is a state of irreversible cell cycle arrest. Studies have shown that senescence of myofibroblasts can limit or reduce cardiac fibrosis.

View Article and Find Full Text PDF

Single-unit monomer insertion (SUMI) has become an important strategy for the synthesis of sequence-controlled vinyl polymers due to its strong versatility and high efficiency. However, all reported SUMI processes are based on a free-radical mechanism, resulting in a limited number of monomer types being applicable to SUMI or a limited number of sequences of structural units that SUMI can synthesize. Herein, we developed a novel SUMI based on a cationic mechanism (cSUMI), which operates through a degenerative (similar to radical SUMI) but cationic chain transfer process.

View Article and Find Full Text PDF

Identification and quantification of synthetic polymers in complex biological milieu are crucial for delivery, sensing and scaffolding functions, but conventional techniques based on imaging probe labellings only afford qualitative results. Here we report modular construction of precise sequence-defined amphiphilic polymers that self-assemble into digital micelles with contour lengths strictly regulated by oligourethane sequences. Direct sequence reading is accomplished with matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry, facilitated by high-affinity binding of alkali metal ions with poly(ethylene glycol) dendrons and selective cleavage of benzyl-carbamate linkages.

View Article and Find Full Text PDF

is a medically valuable plant with anti-epileptic activity; however, its mechanism of action remains unknown. In this study, network pharmacological, , and experiments were carried out to explore the potential anti-epileptic components and targets of . The main active components of were identified by searching the Traditional Chinese Medicine System Pharmacology database.

View Article and Find Full Text PDF

Arsenic is a common environmental pollutant and poses a serious threat to human and animal health. In this study, we used the ducks to mimic arsenic trioxide (ATO) exposure and investigated the mechanism of cardiac toxicity. The results indicated that ATO inhibited the body and organ growth of ducks, led to an increase in LDH content, and caused obvious deformity, ischemia infarction.

View Article and Find Full Text PDF

The unique permselectivity of cellular membranes is of crucial importance to maintain intracellular homeostasis while adapting to microenvironmental changes. Although liposomes and polymersomes have been widely engineered to mimic microstructures and functions of cells, it still remains a considerable challenge to synergize the stability and permeability of artificial cells and to imitate local milieu fluctuations. Herein, we report concurrent crosslinking and permeabilizing of pH-responsive polymersomes containing Schiff base moieties within bilayer membranes via enzyme-catalyzed acid production.

View Article and Find Full Text PDF

Due to the complex permittivity, it is difficult to directly clarify the transient mechanism between electromagnetic waves and Debye media. To overcome the above problem, the temporal relationship between the electromagnetic waves and permittivity is explicitly derived by applying the Fourier inversion and introducing the remnant displacement. With the help of the Poynting theorem and energy conservation equation, the transient power loss density is derived to describe the transient dissipation of electromagnetic field and the mechanism on phase displacement has been explicitly revealed.

View Article and Find Full Text PDF

The selective activation of nanovectors in pathological tissues is of crucial importance to achieve optimized therapeutic outcomes. However, conventional stimuli-responsive nanovectors lack sufficient sensitivity because of the slight difference between pathological and normal tissues. To this end, the development of nanovectors capable of responding to weak pathological stimuli is of increasing interest.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effectiveness of different heparin lock concentrations in hemodialysis patients, highlighting a lack of consistent findings among previous trials.
  • A systematic review and meta-analysis included four randomized controlled trials with 370 patients, revealing that a 1000 U/ml concentration significantly lowers activated partial thromboplastin time (APTT) compared to 5000 U/ml.
  • Despite the benefits regarding APTT, both concentrations showed no major differences in complications like catheter-related thrombosis, bleeding, or occlusions, suggesting further research is needed on optimal heparin levels.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0sak42ib5isjb8vpk8t1ao9ssnq5pkmn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once