PtRu-based catalysts toward hydrogen oxidation reaction (HOR) suffer from low efficiency, CO poisoning and over-oxidation at high potentials. In this work, an amorphization strategy is adopted for preparation of amorphous SrRuPtOH nanobelts (a-SrRuPtOH NBs). The a-SrRuPtOH NBs has optimized adsorption of intermediates (H and OH), increased number of active sites, highly weakened CO poisoning and enhanced anti-oxidation ability owing to the special amorphous structure.
View Article and Find Full Text PDFIntroduction: Lung adenocarcinoma, a disease with complex pathogenesis, high mortality and poor prognosis, is one of the subtypes of lung cancer. Hence, it is very crucial to find novel biomarkers as diagnostic and therapeutic targets for LUAD.
Methods: GSE10072 was used for DEGs and WGCNA, and the intersection genes were subjected to enrichment analysis through Metascape and GSEA.
Cation exchange (CE) reaction is a classical synthesis method for creating complex structures. A lock of study on intrinsic mechanism limits its understanding and practical application. Using X-ray absorption spectroscopy, we observed that the evolution from Ru-Cl to Ru-O/OH occurs during the CE between KRuCl and CoSn(OH) in aqueous solution, while CE between KPtCl and CoSn(OH) is inhibited due to the failure of structural evolution from Pt-Cl to Pt-O/OH.
View Article and Find Full Text PDFPhytohormones are a class of endogenous substances that separately or synergistically regulate the growth, development, and differentiation of plants. Accurately and efficiently detecting and monitoring the concentration of plant hormones in living plants is of significant importance. Herein, a novel mesoporous carbon hollow spheres (MCHS)-based in vivo solid phase microextraction (SPME) probe was designed for in vivo sampling of plant hormones.
View Article and Find Full Text PDFThe potential pesticide hazard to non-target organisms is a global concern. It is critical to develop the sensitive detection methods of multiple pesticides in various complex matrices. Here, benzene-1,3,5-tricarbaldehyde (BTCA) and 1,3,5-Tri (4-aminophenyl) benzene (TAPB) were employed as precursors for the in-situ growth of COF on the surface of amino-functionalized stainless steel wire (SS) via a solvothermal method.
View Article and Find Full Text PDFLithium-oxygen batteries (LOBs) with high energy density are a promising advanced energy storage technology. However, the slow cathodic redox kinetics during cycling causes the discharge products to fail to decompose in time, resulting in large polarization and battery failure in a short time. Therefore, a self-supporting interconnected nanosheet array network NiCoO/MnO with a Mott-Schottky heterostructure on titanium paper (TP-NCO/MO) is ingeniously designed as an efficient cathode catalyst material for LOBs.
View Article and Find Full Text PDFDengue virus (DENV2) is the cause of dengue disease and a worldwide health problem. DENV2 replicates in the host cell using polyproteins such as NS3 protease in conjugation with NS2B cofactor, making NS3 protease a promising antiviral drug-target. This study investigated the efficacy of 'Niloticin' against NS2B/NS3-protease.
View Article and Find Full Text PDFTraffic lights play vital roles in urban traffic management systems, providing clear directional guidance for vehicles and pedestrians while ensuring traffic safety. However, the vast quantity of traffic lights widely distributed in the transportation system aggravates energy consumption. Here, a self-powered traffic light system is proposed through wind energy harvesting based on a high-performance fur-brush dish triboelectric nanogenerator (FD-TENG).
View Article and Find Full Text PDFPolyethylene oxide (PEO)-based solid-state batteries hold great promise as the next-generation batteries with high energy density and high safety. However, PEO-based electrolytes encounter certain limitations, including inferior ionic conductivity, low Li transference number, and poor mechanical strength. Herein, we aim to simultaneously address these issues by utilizing one-dimensional zwitterionic cellulose nanofiber (ZCNF) as fillers for PEO-based electrolytes using a simple aqueous solution casting method.
View Article and Find Full Text PDFAlloying-type antimony (Sb) with high theoretical capacity is a promising anode candidate for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Given the larger radius of Na (1.02 Å) than Li (0.
View Article and Find Full Text PDFLithium metal batteries (LMBs) are considered a highly prospective next-generation energy storage technology. However, their large-scale commercial application is hampered by the uncontrollable growth of Li dendrites, which accompany the boundless inflation of the battery's volume. In this study, we address this challenge by fabricating a porous structure of the MOF-derived CoP nanocube film (CoP-NC@PP) as a adorned layer for the separator.
View Article and Find Full Text PDFNoble metals have been widely used in catalysis, however, the scarcity and high cost of noble metal motivate researchers to balance the atomic efficiency and atomic density, which is formidably challenging. This article proposes a robust strategy for fabricating 3D amorphous noble metal-based oxides with simultaneous enhancement on atomic efficiency and density with the assistance of atomic channels, where the atomic utilization increases from 18.2% to 59.
View Article and Find Full Text PDFPyrethroid insecticides residues in water pose a critical threat to the environment from widespread production and overuse. Therefore, it is of major relevance to develop a sensitive and efficient method to detect pyrethroid insecticides in water. In this paper, a covalent organic framework (COF) with NHCO as the structural unit was synthesized using a simple condensation reaction of TTL (NH) and TDBA (COOH).
View Article and Find Full Text PDFHO photosynthesis has attracted great interest in harvesting and converting solar energy to chemical energy. Nevertheless, the high-efficiency process of HO photosynthesis is driven by the low HO productivity due to the recombination of photogenerated electron-hole pairs, especially in the absence of a sacrificial agent. In this work, we demonstrate that ultrathin ZnInS nanosheets with S vacancies (S-ZIS) can serve as highly efficient catalysts for HO photosynthesis via O/HO redox.
View Article and Find Full Text PDFLow-dimensional CsPbBr perovskite materials have gained widespread attention, derived from their remarkable properties and potential for numerous optoelectronic applications. Herein, the sample of CsPbBr microwires were prepared horizontally onto n-type InGaN film substrate using an in-plane solution growth method. The resulting CsPbBr microwire/InGaN heterojunction allows for the achievement of a highly sensitive and broadband photodetector.
View Article and Find Full Text PDFOcean energy is a kind of clean and renewable energy source, but it cannot be efficiently harvested by traditional electromagnetic generators, due to its low-frequency characteristic. The emergence of triboelectric nanogenerators provides a more promising technology for collecting ocean energy. In this work, a durable roller-based swing-structured triboelectric nanogenerator (RS-TENG) is designed and fabricated for low-frequency water wave energy harvesting.
View Article and Find Full Text PDFTobacco-specific nitrosamines (TSNAs) are probably carcinogenic disinfection byproducts eliciting health risk concerns. The determination and surveillance of TSNAs in water is still cumbersome due to the lack of advanced sample preparation methods. Herein, we prepared a solid phase microextraction (SPME) fiber coated with the molecularly imprinted polymer (MIP) sheathed mesoporous silica tube (MST) composite material, and developed a highly efficient, selective, and sensitive method for the determination of five TSNAs in water.
View Article and Find Full Text PDFDesigning an efficient catalyst for acidic oxygen evolution reaction (OER) is of critical importance in manipulating proton exchange membrane water electrolyzer (PEMWE) for hydrogen production. Here, we report a fast, nonequilibrium strategy to synthesize quinary high-entropy ruthenium iridium-based oxide (M-RuIrFeCoNiO) with abundant grain boundaries (GB), which exhibits a low overpotential of 189 millivolts at 10 milliamperes per square centimeter for OER in 0.5 M HSO.
View Article and Find Full Text PDFPrussian blue analogues (PBAs) are promising cathode materials for sodium-ion batteries (SIBs) due to their tunable chemistry, open channel structure, and low cost. However, excessive crystal water and volume expansion can negatively impact the lifetime of actual SIBs. In this study, a novel iron nitroprusside: Fe[Fe(CN) NO] (PBN) was synthesized to effectively eliminate the detrimental effects of crystal water on the reversible capacity and cycling stability of PBA materials.
View Article and Find Full Text PDFObjectives: The rapidly evolving organ failure and high short-run mortality of acute-on-chronic liver failure (ACLF) are inseparable from the role of systemic inflammatory response. S100A8 and S100A9 are associated with the excessive cytokine storm and play a decisive part within the process of inflammation. We aimed to clarify the role of them in predicting prognosis of hepatitis B virus-related ACLF (HBV-ACLF).
View Article and Find Full Text PDFPurpose: The study aims to evaluate the effectiveness of a tenofovir alafenamide fumarate (TAF) and pegylated interferon alfa (PegIFN-α) regimen compared to a tenofovir disoproxil fumarate (TDF) and PegIFN-α therapy in patients with chronic hepatitis B (CHB).
Patients And Methods: Patients who were treated with PegIFN-α in combination with TAF or TDF were retrospectively enrolled. The primary outcome measured was the HBsAg loss rate.
γδ intestinal intraepithelial lymphocytes (IELs) constitute the majority of IELs with unique CD8αα homodimers that are distinct from γδT cells in other tissues. However, it remains largely unclear how those cells develop. Here we show that transforming growth factor beta (TGF-β) signaling controls the development of TCRγδCD8αα IELs.
View Article and Find Full Text PDFMycorrhizae are ubiquitous symbioses established between fungi and plant roots. Orchids, in particular, require compatible mycorrhizal fungi for seed germination and protocorm development. Unlike arbuscular mycorrhizal fungi, which have wide host ranges, orchid mycorrhizal fungi are often highly specific to their host orchids.
View Article and Find Full Text PDF