The etiology of recurrent pregnancy loss (RPL) is complicated and effective clinical preventive measures are lacking. Identifying biomarkers for RPL has been challenging, and to date, little is known about the role of N6-methyladenosine (m6A) regulators in RPL. Expression data for m6A regulators in 29 patients with RPL and 29 healthy controls were downloaded from the Gene Expression Omnibus (GEO) database.
View Article and Find Full Text PDFThe clinicopathological features of early gastric cancer (EGC) with mixed-type histology (differentiated and undifferentiated) are incompletely understood, and the capacity of endoscopic submucosal dissection (ESD) to treat mixed-type cancer remains controversial. This systematic review analyzed the rate of lymph node metastasis (LNM) in mixed-type EGC. We gathered articles published up to February 21, 2021, that analyzed the relationship between LNM and mixed-type EGC from Embase, PubMed, and Web of Science.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) play an important role in cutaneous wound healing; however, the functional mechanisms involved in the healing process are poorly understood. A series of studies indicate that keratinocytes that migrate into the wound bed rely on an epithelial-mesenchymal transition (EMT)-like process to initiate re-epithelialization. We therefore examined whether bone marrow-derived MSCs (BMSCs) could affect biological behavior and induce EMT-like characteristics in the human epidermal keratinocytes (HEKs) and in the immortalized human keratinocyte cell line HaCaT cells, and we investigated the signaling pathways of BMSC-mediated phenotypic changes.
View Article and Find Full Text PDFBackground: Patients with a deep burn injury are characterized by losing the function of perspiration and being unable to regenerate the sweat glands. Because of their easy accession, multipotency, and lower immunogenicity, bone marrow-derived mesenchymal stem cells (BM-MSCs) represent as an ideal biological source for cell therapy. The aim of this study was to identify whether targeting the promotor of ectodysplasin (EDA) by CRISPR/dCas9-effector (dCas9-E) could induce the BM-MSCs to differentiate into sweat gland-like cells (SGCs).
View Article and Find Full Text PDF