IEEE Trans Med Imaging
September 2022
Learning how to capture long-range dependencies and restore spatial information of down-sampled feature maps are the basis of the encoder-decoder structure networks in medical image segmentation. U-Net based methods use feature fusion to alleviate these two problems, but the global feature extraction ability and spatial information recovery ability of U-Net are still insufficient. In this paper, we propose a Global Feature Reconstruction (GFR) module to efficiently capture global context features and a Local Feature Reconstruction (LFR) module to dynamically up-sample features, respectively.
View Article and Find Full Text PDFAccurate segmentation of optic disc (OD) and optic cup (OC) in fundus images is crucial for the analysis of many retinal diseases, such as the screening and diagnosis of glaucoma and atrophy segmentation. Due to domain shift between different datasets caused by different acquisition devices and modes and inadequate training caused by small sample dataset, the existing deep-learning-based OD and OC segmentation networks have poor generalization ability for different fundus image datasets. In this paper, adopting the mixed training strategy based on different datasets for the first time, we propose an encoder-decoder based general OD and OC segmentation network (named as GDCSeg-Net) with the newly designed multi-scale weight-shared attention (MSA) module and densely connected depthwise separable convolution (DSC) module, to effectively overcome these two problems.
View Article and Find Full Text PDF