Hypertrophic cardiomyopathy (HCM), one of the most common forms of myocardial diseases, is the major cause of sudden cardiac death in young adults and competitive athletes. Analyses of gene mutations associated with HCM are valuable for its molecular diagnosis, genetic counseling, and management of familial HCM. To dissect the relationship between the clinical presentation and gene mutations of HCM, the genetic characterizations of 19 HCM-related genes in 18 patients (8 cases from 6 pedigrees with familial HCM and 10 cases without familial HCM) were detected using next-generation sequencing (NGS).
View Article and Find Full Text PDFInherited cardiomyopathy is the major cause of sudden cardiac death (SCD) and heart failure (HF). The disease is associated with extensive genetic heterogeneity; pathogenic mutations in cardiac sarcomere protein genes, cytoskeletal protein genes and nuclear envelope protein genes have been linked to its etiology. Early diagnosis is conducive to clinical monitoring and allows for presymptomatic interventions as needed.
View Article and Find Full Text PDFDilated cardiomyopathy (DCM) is a major cause of sudden cardiac death and heart failure, and it is characterized by genetic and clinical heterogeneity, even for some patients with a very poor clinical prognosis; in the majority of cases, DCM necessitates a heart transplant. Genetic mutations have long been considered to be associated with this disease. At present, mutations in over 50 genes related to DCM have been documented.
View Article and Find Full Text PDFAs a common cardiac disease mainly caused by gene mutations in sarcomeric cytoskeletal, calcium-handling, nuclear envelope, desmosomal, and transcription factor genes, inherited cardiomyopathy is becoming one of the major etiological factors of sudden cardiac death (SCD) and heart failure (HF). This disease is characterized by remarkable genetic heterogeneity, which makes it difficult to screen for pathogenic mutations using Sanger sequencing. In the present study, three probands, one with familial hypertrophic cardiomyopathy (FHCM) and two with familial dilated cardiomyopathy (FDCM), were recruited together with their respective family members.
View Article and Find Full Text PDFHere we demonstrate the use of multiple Si nanochannel (NC) or nanograting (NG) instead of the conventional single nanochannel or nanowire design in biosensors. The NG devices can significantly reduce device-to-device variation, and improve device performance, e.g.
View Article and Find Full Text PDFWe performed high-resolution in vitro proton nuclear magnetic resonance spectroscopy on cerebrospinal fluid and urine samples of 44 patients with leukodystrophies of unknown cause. Free sialic acid concentration was increased in cerebrospinal fluid of two siblings with mental retardation and mild hypomyelination. By contrast, urinary excretion of free sialic acid in urine was normal on repeated testing by two independent methods.
View Article and Find Full Text PDFThis study describes a method of gene delivery to pancreatic islets of adult, living animals by ultrasound targeted microbubble destruction (UTMD). The technique involves incorporation of plasmids into the phospholipid shell of gas-filled microbubbles, which are then infused into rats and destroyed within the pancreatic microcirculation with ultrasound. Specific delivery of genes to islet beta cells by UTMD was achieved by using a plasmid containing a rat insulin 1 promoter (RIP), and reporter gene expression was regulated appropriately by glucose in animals that received a RIP-luciferase plasmid.
View Article and Find Full Text PDFUnlabelled: Aromatase is the enzyme that catalyzes the conversion of androgen to oestrogen. Aromatase expression in extra-gonadal sites and local oestrogen synthesis play an important role in the physiological conditions and in the growth of certain neoplasms.
Objective: The purpose of this study was to investigate aromatase expression in oral keratinocytes and oral squamous cell carcinoma (SCC).
Bidirectional promoters are widely known among lower organisms but rare in mammals. A shared promoter between the two human genes encoding very long chain acyl-CoA dehydrogenase (VLCAD) and postsynaptic density protein 95 (PSD-95) is an ideal model to investigate bidirectional transcription in mammals. VLCAD associates with the inner mitochondrial membrane and catalyzes the initial step in mitochondrial long-chain fatty acid beta-oxidation.
View Article and Find Full Text PDF