Ultrafast laser interactions with topological insulators (TIs) have garnered tremendous interest for understanding light-matter interactions and developing optoelectronic devices across visible to terahertz (THz) regions owning to their high carrier mobility and sensitivity to electric fields. In particular, within the THz regime, TIs hold considerable promise to realize advanced emitters, modulators, and detectors because of their fascinating ultrafast THz dynamics. However, a detailed understanding of TIs' THz dynamics necessitates access to both nanoscale and femtosecond timescale.
View Article and Find Full Text PDFUnderstanding the ultrafast excitation, detection, transportation, and manipulation of nanoscale spin dynamics in the terahertz (THz) frequency range is critical to developing spintronic THz optoelectronic nanodevices. However, the diffraction limitation of the sub-millimeter waves - THz wavelengths - has impaired experimental investigation of spintronic THz nano-emission. Here, we present an approach to studying laser THz emission nanoscopy from W|CoFeB|Pt metasurfaces with ∼60-nm lateral spatial resolution.
View Article and Find Full Text PDFFree-space strong-field terahertz (THz) electromagnetic pulses have emerged as a potent tool for non-equilibrium quantum state control. However, these applications predominantly rely on electric field components, with limited utilization of magnetic field components. A traditional electro-optical sampling technique may encounter constraints due to the field strength saturation effect when detecting strong-field THz pulses.
View Article and Find Full Text PDFOzone (O) pollution is a severe environmental problem in China. The incomplete understanding of atmospheric photochemical reaction mechanisms prevents us from accurately understanding the chemistry of O production. Here, we used an improved dual-channel reaction chamber technique to measure net photochemical O production rate (P(O)) directly in Dongguan, a typical industrial city in China.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) are key components of tropospheric chemistry, of which industrial emissions are an important source of atmospheric VOCs. In this study, online measurements of 74 VOCs were made in a typical industrial area of the Pearl River Delta in southern China during the early summer of 2021. The mean volume mixing ratio of total volatile organic compounds (TVOC) was (81.
View Article and Find Full Text PDFStrong-field terahertz (THz)-matter interaction permits the investigation of nonequilibrium behaviors in the nonperturbative zone. However, the unavailability of a high-field free-space THz source with high repetition rates, excellent beam quality, and high stability hinders its development. In this work, we obtain the nonlinear modulation dynamics of a "THz-nano" metasurface on silicon substrates using a time-resolved strong-field THz-pump THz-probe (TPTP) with a thousand orders local field enhancement through confining THz waves into nano-gaps (15 nm, /33,000).
View Article and Find Full Text PDFWater molecules play a very important role in the hydration and dehydration process of hydrates, which may lead to distinct physical and chemical properties, affecting their availability in practical applications. However, miniaturized, integrated sensors capable of the rapid, sensitive sensing of water molecules in the hydrate are still lacking, limiting their proliferation. Here, we realize the high-sensitivity sensing of water molecules in copper sulfate pentahydrate (CuSO·5HO), based on an on-chip terahertz whispering gallery mode resonator (THz-WGMR) fabricated on silicon material via CMOS-compatible technologies.
View Article and Find Full Text PDFTerahertz (THz) spectroscopy provides multifaceted capabilities for observing low-energy responses of macromolecules, cells and tissues, understanding THz biophysical effects, and expecting to realize the application of THz technology in biomedicine. However, its high-frequency characteristics of limited penetration depth and strong absorption of water in the body comparable to microwaves are impeding the proliferation of THz spectroscopy. Here we show that THz spectroscopy makes possible the observation of THz anisotropy phenomena for the first time in fascia and lean tissue.
View Article and Find Full Text PDFImproved insight into the molecular mechanisms of triple negative breast cancer (TNBC) is required to predict prognosis and develop a new therapeutic strategy for targeted genes. The aim of this study is to identify key genes which may affect the prognosis of TNBC patients by bioinformatic analysis. In our study, the RNA sequencing (RNA-seq) expression data of 116 breast cancer lacking ER, PR, and HER2 expression and 113 normal tissues were downloaded from The Cancer Genome Atlas (TCGA).
View Article and Find Full Text PDFDental caries is a widespread chronic infectious disease which may induce a series of oral and general problems if untreated. As a result, early diagnosis and follow-up following radiation-free dental caries therapy are critical. Terahertz (THz) waves with highly penetrating and non-ionizing properties are ideally suited for dental caries diagnosis, however related research in this area is still in its infancy.
View Article and Find Full Text PDFThe aim of this study is to identify potential biomarkers for early diagnosis of gynecologic cancer in order to improve survival. Cervical cancer (CC) and endometrial cancer (EC) are the most common malignant tumors of gynecologic cancer among women in the world. As the underlying molecular mechanisms in both cervical and endometrial cancer remain unclear, a comprehensive and systematic bioinformatics analysis is required.
View Article and Find Full Text PDFTerahertz (THz) technology lays the foundation for next-generation high-speed wireless communication, nondestructive testing, food safety inspecting, and medical applications. When THz technology is integrated by artificial intelligence (AI), it is confidently expected that THz technology could be accelerated from the laboratory research stage to practical industrial applications. Employing THz video imaging, we can gain more insights into the internal morphology of silkworm egg.
View Article and Find Full Text PDFBladder cancer is a common malignancy with mechanisms of pathogenesis and progression. This study aimed to identify the prognostic hub genes, which are the central modulators to regulate the progression and proliferation in the specific subtype of bladder cancer. The identification of the candidate hub gene was performed by weighted gene co-expression network analysis to construct a free-scale gene co-expression network.
View Article and Find Full Text PDFImproved insight into the molecular mechanisms of head and neck squamous cell carcinoma (HNSCC) is required to predict prognosis and develop a new therapeutic strategy for targeted genes. The aim of this study is to identify significant genes associated with HNSCC and to further analyze its prognostic significance. In our study, the cancer genome atlas (TCGA) HNSCC database and the gene expression profiles of GSE6631 from the Gene Expression Omnibus (GEO) were used to explore the differential co-expression genes in HNSCC compared with normal tissues.
View Article and Find Full Text PDFBreast cancer is one of the most common malignancies. However, the molecular mechanisms underlying its pathogenesis remain to be elucidated. The present study aimed to identify the potential prognostic marker genes associated with the progression of breast cancer.
View Article and Find Full Text PDF