Effective depletion of immune suppressive regulatory T cells (Tregs) in the tumor microenvironment without triggering systemic autoimmunity is an important strategy for cancer immunotherapy. Modified vaccinia virus Ankara (MVA) is a highly attenuated, non-replicative vaccinia virus with a long history of human use. Here, we report rational engineering of an immune-activating recombinant MVA (rMVA, MVA∆E5R-Flt3L-OX40L) with deletion of the vaccinia E5R gene (encoding an inhibitor of the DNA sensor cyclic GMP-AMP synthase, cGAS) and expression of two membrane-anchored transgenes, Flt3L and OX40L.
View Article and Find Full Text PDFJ Environ Public Health
September 2022
In order to realize the evaluation of regional comprehensive disaster reduction capacity in a complex environment, an evaluation model of regional comprehensive disaster reduction capacity in a complex environment based on remote sensing monitoring and data image feature analysis is proposed. According to the geographical location and scale of disaster spots and the parameter analysis of the model of disaster-bearing bodies around the disaster spots, the remote sensing monitoring method is adopted to extract the geographical remote sensing images of regional disaster spots in a complex environment. The collected geographical remote sensing images of regional disaster points under the complex environmental background are filtered and preprocessed, and the texture parameters of the geographical remote sensing images of regional disaster points under the complex environmental background are recognized by combining the method of image texture feature extraction.
View Article and Find Full Text PDFOncolytic viruses (OVs) are an emergent and unique therapy for cancer patients. Similar to chemo- and radiation therapy, OV can lyse (kill) cancer cell directly. In general, the advantages of OVs over other treatments are primarily: a higher safety profile (as shown by less adverse effects), ability to replicate, transgene(s) delivery, and stimulation of a host's immune system against cancer.
View Article and Find Full Text PDFOncolytic viruses pose many questions in their use in cancer therapy. In this study, we assessed the potential of mpJX-594 (mouse-prototype JX-594), a replication-competent vaccinia virus administered by intravenous injection, to target the tumor vasculature, produce immune activation and tumor cell killing more widespread than the infection, and suppress invasion and metastasis. These actions were examined in RIP-Tag2 transgenic mice with pancreatic neuroendocrine tumors that developed spontaneously and progressed as in humans.
View Article and Find Full Text PDFRecombinant poxviruses, utilized as vaccine vectors and oncolytic viruses, often require manipulation at multiple genetic loci in the viral genome. It is essential for viral vectors to possess no adventitious mutations and no (antibiotic) selection marker in the final product for human patients in order to comply with the guidance from the regulatory agencies. Rintoul et al.
View Article and Find Full Text PDFUnlabelled: Oncolytic virus (OV) therapy has emerged as a novel tool in our therapeutic arsenals for fighting cancer. As a live biologic agent, OV has the ability to target and selectively amplify at the tumor sites. We have reported that a vaccinia-based OV (Pexa-Vec) has shown good efficacy in preclinical models and in clinical trials.
View Article and Find Full Text PDFVaccinia virus (VV) is an oncolytic virus that is currently being evaluated as a promising cancer vaccine in several phase I, II and III clinical trials. Although several quality control tests are performed on each new batch of virus, these do not routinely include a systematic characterization of virus particle homogeneity, or relate the infectious titer to the total number of submicron sized particles (SSPs) present in the sample. SSPs are comprised of infectious virus and non-infectious viral particles, but also cell contaminants derived from the virus isolation procedures, such as cellular vesicles and debris.
View Article and Find Full Text PDFThis study characterizes the ability of novel oncolytic rhabdoviruses (Maraba MG1) to boost natural killer (NK) cell activity. Our results demonstrate that MG1 activates NK cells via direct infection and maturation of conventional dendritic cells. Using NK depletion and conventional dendritic cells ablation studies in vivo, we established that both are required for MG1 efficacy.
View Article and Find Full Text PDFObjective: Oncolytic virotherapy is a promising modality in endometrial cancer (EC) therapy. In this study, we compared the efficacy of the Copenhagen and Wyeth strains of oncolytic vaccinia virus (VV) incorporating the human thyroidal sodium iodide symporter (hNIS) as a reporter gene (VVNIS-C and VVNIS-W) in EC.
Methods: Infectivity of VVNIS-C and VVNIS-W in type I (HEC1A, Ishikawa, KLE, RL95-2, and AN3 CA) and type II (ARK-1, ARK-2, and SPEC-2) human EC cell lines was evaluated.
Oncolytic viruses are generally designed to be cancer selective on the basis of a single genetic mutation. JX-594 is a thymidine kinase (TK) gene-inactivated oncolytic vaccinia virus expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) and lac-Z transgenes that is designed to destroy cancer cells through replication-dependent cell lysis and stimulation of antitumoral immunity. JX-594 has demonstrated a favorable safety profile and reproducible tumor necrosis in a variety of solid cancer types in clinical trials.
View Article and Find Full Text PDFHigh-risk carcinogenic subtypes of human papilloma virus (HPV) are associated with the development of squamous cell carcinomas of the cervix (CC) and a subset of head and neck (HNSCC). Recurrent metastatic diseases of these sites display a dismal prognosis. Therefore, there is an urgent need to uncover innovative therapeutic strategies in this clinical setting.
View Article and Find Full Text PDFBackground: Genetic manipulation of poxvirus genomes through attenuation, or insertion of therapeutic genes has led to a number of vector candidates for the treatment of a variety of human diseases. The development of recombinant poxviruses often involves the genomic insertion of a selectable marker for purification and selection purposes. The use of marker genes however inevitably results in a vector that contains unwanted genetic information of no therapeutic value.
View Article and Find Full Text PDFThe purpose of this study was to investigate the oncolytic potential of the recombinant, granulocyte macrophage colony-stimulating factor (GM-CSF)-expressing vaccinia virus (VV) JX-594 in experimental malignant glioma (MGs) in vitro and in immunocompetent rodent models. We have found that JX-594 killed all MG cell lines tested in vitro. Intratumoral (i.
View Article and Find Full Text PDFAggressive and infiltrative invasion is one of the hallmarks of glioblastoma. Low-density lipoprotein receptor-related protein (LRP) is expressed by glioblastoma, but the role of this receptor in astrocytic tumor invasion remains poorly understood. We show that activation of protein kinase C-alpha (PKC-alpha) phosphorylated and down-regulated LRP expression.
View Article and Find Full Text PDFOncolytic viruses capable of tumor-selective replication and cytolysis have shown early promise as cancer therapeutics. However, the host immune system remains a significant obstacle to effective systemic administration of virus in a clinical setting. Here, we demonstrate the severe negative impact of the adaptive immune response on the systemic delivery of oncolytic vesicular stomatitis virus (VSV) in an immune-competent murine tumor model, an effect mediated primarily by the neutralization of injected virions by circulating antibodies.
View Article and Find Full Text PDFRenewal of nongermative epithelia is poorly understood. The novel mitogen "lacritin" is apically secreted by several nongermative epithelia. We tested 17 different cell types and discovered that lacritin is preferentially mitogenic or prosecretory for those types that normally contact lacritin during its glandular outward flow.
View Article and Find Full Text PDFPurpose: To sequence and comprehensively analyze human and mouse lacrimal gland transcriptomes as part of the NEIBank project.
Methods: cDNA libraries generated from normal human and mouse lacrimal glands were sequenced and analyzed by PHRED, RepeatMasker, BLAST, and GRIST. Human "lacrimal-preferred genes" and putative gene regulatory elements were respectively identified in UniGene and ConSite, and gene clustering was analyzed by chromosomal mapping.
Morphogenesis of exocrine glands is a complex stepwise process of epithelial ingrowth, ductal elongation, ductal branching, and alveolar or acinar differentiation. Emerging from an increasing number of mouse gene knockout, dominant-negative, and antisense models is the identification of a remarkable collection of cell adhesion molecules, growth factors, and their receptors whose time-dependent contributions to glandular organogenesis are essential. Many have cryptically overlapping and interdependent but noncompensatory roles.
View Article and Find Full Text PDF