This study focuses on the northern scenic area of Changbai Mountain, aiming to evaluate the emergency evacuation capacity of the region in the context of geological disasters and to formulate corresponding improvement strategies. Due to the relatively small area of this region, difficulties in data acquisition, and insufficient precision, traditional models for evaluating emergency evacuation capacity are typically applied to urban built environments, with relatively few studies addressing scenic areas. To tackle these issues, this research employs the Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN), which successfully resolves the problem of blurriness in remote sensing images and significantly enhances image clarity.
View Article and Find Full Text PDFThe existing research on the microstructural alterations associated with sport-related concussions (SRCs) has primarily focused on deep white matter (DWM) fibers, while the impact of SRCs on the superficial white matter (SWM) and gray matter (GM) remains unknown. This study aimed to characterize the altered metrics obtained from neurite orientation dispersion and density imaging (NODDI) in boxers with SRCs, and thereby determine whether distinct regional patterns of microstructural alterations can offer valuable insights for accurate diagnosis and prognosis. Concussed boxers ( = 56) and healthy controls (HCs) with typically developing ( = 72) underwent comprehensive neuropsychological assessment and magnetic resonance imaging (MRI) examinations.
View Article and Find Full Text PDFExploring novel materials with intrinsic self-trapped excitons (STEs) is crucial for advancing optoelectronic technologies. In this study, 2D 3R-phase ZnInS, featuring broken inversion symmetry is introduced to investigate intrinsic STEs. This material exhibits a broadband photoluminescence (PL) emission with a full width at half maximum of 164 nm and a large Stokes shift of ≈0.
View Article and Find Full Text PDFThe neurological effects and underlying pathophysiological mechanisms of sports-related concussion (SRC) in active young boxers remain poorly understood. This study aims to investigate the impairment of white matter microstructure and assess changes in glymphatic function following SRC by utilizing neurite orientation dispersion and density imaging (NODDI) on young boxers who have sustained SRC. A total of 60 young participants were recruited, including 30 boxers diagnosed with SRC and 30 healthy individuals engaging in regular exercise.
View Article and Find Full Text PDFIn the heterostructure of two-dimensional (2D) materials, many novel physics phenomena are strongly dependent on the Moiré superlattice. How to achieve the continuous manipulation of the Moiré superlattice in the same sample is very important to study the evolution of various physical properties. Here, in minimally twisted monolayer-multilayer graphene, we found that bubble-induced strain has a huge impact on the Moiré superlattice.
View Article and Find Full Text PDFIt is usually difficult to realize high mobility together with a low threshold voltage and good stability for amorphous oxide thin-film transistors (TFTs). In addition, a low fabrication temperature is preferred in terms of enhancing compatibility with the back end of line of the device. In this study, α-IGZO TFTs were prepared by high-power impulse magnetron sputtering (HiPIMS) at room temperature.
View Article and Find Full Text PDFIntroduction: Altered functional connectivity of resting-state functional magnetic resonance imaging (rs-fMRI) within default mode network (DMN) regions has been verified to be closely associated with cognitive decline in patients with Type 2 diabetes mellitus (T2DM), but most studies neglected the fluctuations of brain activities-the dynamic effective connectivity (DEC) within DMN of T2DM is still unknown.
Methods: For the current investigation, 40 healthy controls (HC) and 36 T2DM patients have been recruited as participants. To examine the variation of DEC between T2DM and HC, we utilized the methodologies of independent components analysis (ICA) and multivariate granger causality analysis (mGCA).
DNAzymes are catalytically active single-stranded DNAs in which DNAzyme 10-23 (Dz 10-23) consists of a catalytic core and a substrate-binding arm that reduces gene expression through sequence-specific mRNA cleavage. However, the application of Dz 10-23 depends on exogenous delivery, which leads to its inability to be synthesized and stabilized , thus limiting its application. As a unique reverse transcription system, the bacterial retron system can synthesize single-stranded DNA using ncRNA msr/msd as a template.
View Article and Find Full Text PDFOptical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
Silicon nanoparticles (Si NPs) supporting Mie resonances exhibit vivid structural colors on the subwavelength scale. For future wearable devices, next generation Si-based optical units need to be dynamic and stretchable for display, sensing, or signal processing required by human-computer interaction. Here, by utilizing the distance-sensitive electromagnetic coupling of Mie resonances, we maximize the active tuning effect of Si NP-based structures including dimers, oligomers, and NPs on WS, which we called Si nanopixels.
View Article and Find Full Text PDFThe early development of zebrafish () is a complex and dynamic physiological process involving cell division, differentiation, and movement. Currently, the genome and transcriptome techniques have been widely used to study the embryonic development of zebrafish. However, the research of proteomics based on proteins that directly execute functions is relatively vacant.
View Article and Find Full Text PDFStopping bleeding at an early stage and promoting wound healing are of great significance for efficient wound management. In this study, a carboxymethyl chitosan (CMCS)/poly-γ-glutamic acid (γ-PGA)/platelet-rich plasma (PRP) hydrogel (CP-PRP hydrogel) was firstly prepared by crosslinking of CMCS with γ-PGA and the enzymatic coagulation of PRP. Then, the CP-PRP hydrogel was freeze-dried and transformed into a sponge (CP-PRP sponge).
View Article and Find Full Text PDFTo solve heavy metals leaching problem in the utilization of various industrial solid wastes, this work investigated the heavy metals immobilization of ternary geopolymer prepared by nickel slag (NS), lithium slag (LS), and metakaolin (MK). Compressive strength was measured to determine the optimum and appropriate mix proportions. The leaching characteristics of typical heavy metals (Cu (Ⅱ), Pb (Ⅱ), and Cr (Ⅲ)) in acid, alkali, and salt environments were revealed by Inductively Coupled Plasma (ICP).
View Article and Find Full Text PDFThe effects of attapulgite and montmorillonite calcinated at 750 °C for 2 h as supplementary cementing materials (SCMs) on the working properties, mechanical strength, phase composition, morphology, hydration and heat release of ordinary Portland cement (OPC) were studied. The results show that pozzolanic activity increased with time after calcination, and with the increase in content of calcined attapulgite and calcined montmorillonite, the fluidity of cement paste exhibited a downward trend. Meanwhile, the calcined attapulgite had a greater effect on the decrease in the fluidity of cement paste than calcined montmorillonite, and the maximum reduction was 63.
View Article and Find Full Text PDFThe energy and metabolic state of sows will alter considerably over different phases of gestation. Maternal metabolism increases dramatically, particularly in late pregnancy. This is accompanied by the development of an increase in oxidative stress, which has a considerable negative effect on the maternal and the placenta.
View Article and Find Full Text PDFFew-layer transition metal dichalcogenides (TMDs) and their combination as van der Waals heterostructures provide a promising platform for high-performance optoelectronic devices. However, the ultrathin thickness of TMD flakes limits efficient light trapping and absorption, which triggers the hybrid construction with optical resonant cavities for enhanced light absorption. The optical structure enriched photodetectors can also be wavelength- and polarization-sensitive but require complicated fabrication.
View Article and Find Full Text PDFMetasurfaces, artificial 2D structures, have been widely used for the design of various functionalities in optics. Jones matrix, a 2×2 matrix with eight parameters, provides the most complete characterization of the metasurface structures in linear optics, and the number of free parameters (i.e.
View Article and Find Full Text PDFbark has been traditionally used as a Chinese medicine to attenuate stress, but the leaf, which is rich in polyphenols and polysaccharides, has been rarely used. This study aimed to investigate the effect of leaf extracts (EULEs) on oxidative stress and meat quality of broilers. A total of 252 broilers were randomly divided into 3 treatments and fed with a control basal diet (CON), or a diet containing 250 mg/kg or 1,000 mg/kg of EULE for 51 days.
View Article and Find Full Text PDFThe capabilities to manipulate light-matter interaction at the nanoscale lie at the core of many promising photonic applications. Optical nanoantennas, made of metallic or dielectric materials, have seen a rapid development for their remarkable optical properties facilitating the coupling of electromagnetic waves with subwavelength entities. However, high-throughput and cost-effective fabrication of these nanoantennas is still a daunting challenge.
View Article and Find Full Text PDFShort open reading frame-encoded peptides (SEPs) are microproteins with less than 100 amino acids that play an essential role in the growth and development of organisms. There are plenty of short open reading frames in that potentially code polypeptides. We chose 11 time points during the life cycle of to investigate microproteins, particularly those related to development.
View Article and Find Full Text PDFvan der Waals (vdW) heterostructures based on vertical-stacking transition metal dichalcogenides (TMDCs) with tunable excitonic energies and spin-valley properties show intriguing optical and optoelectronic applications. Additionally, vdW heterostructures with high refractive indices, exciton-induced Lorentzian dispersion, and controllable structures are ideal building blocks as optical resonators for subwavelength light confinement and effective light-matter interaction, which have not been studied. Herein, we build vdW hetero-nanoslits based on tungsten disulfide (WS) and hexagonal boron nitride (hBN) multilayers.
View Article and Find Full Text PDFFerulic acid (FA) and vanillic acid (VA) are considered as major phenolic metabolites of cyanidin 3-glucoside, a polyphenol that widely exists in plants that possess a protective effect against oxidative stress and inflammation in our previous study. This study aimed to investigate the effect of FA and VA on inflammation, gut barrier function, and growth performance in a weaned piglet model challenged with lipopolysaccharide (LPS). Thirty-six piglets (PIC 337 × C48, 28 d of age) were randomly allocated into 3 treatments with 6 replicate pens (2 piglets per pen).
View Article and Find Full Text PDFAs the precursor of vitamin A, β-carotene has a positive effect on reproductive performance. Our previous study has shown that β-carotene can increase antioxidant enzyme activity potentially through regulating gut microbiota in pregnant sows. This study aimed to clarify the effect of β-carotene on reproductive performance and postpartum uterine recovery from the aspect of inflammation and gut microbiota by using a mouse model.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2022
Intracellular thermometry provides important information about the physiological activity of single cells and has been implemented using diverse temperature-sensitive materials as nanoprobes. However, measuring the temperature of specific organelles or subcellular structures is challenging because it requires precise positioning of the nanoprobes. Here, it is shown that dispersed fluorescent nanodiamonds (FNDs) endocytosed in living cells can be aggregated into microspheres using optical forces and used as intracellular temperature probes.
View Article and Find Full Text PDF