Publications by authors named "Jiah Shin Chin"

Chronic wounds can take months or even years to heal and require proper medical intervention. Normal wound healing processes require adequate oxygen supply. Accordingly, destroyed or inefficient vasculature leads to insufficient delivery to peripheral tissues and impair healing.

View Article and Find Full Text PDF
Article Synopsis
  • Wound healing involves complex processes and currently faces challenges in accurately measuring inflammation and infection levels.
  • The PETAL sensor is a battery-free, paper-based device that uses deep learning to analyze various wound characteristics through colorimetric sensors for factors like temperature and pH.
  • This sensor has shown a high accuracy (up to 97%) in determining the healing status of wounds in rats, enabling real-time monitoring and early detection of complications for better wound care management.
View Article and Find Full Text PDF

Effective wound care and treatment require a quick and comprehensive assessment of healing status. Here, we develop a carbon dot-doped hydrogel sensor array in polydimethylsiloxane (PDMS) for simultaneous colorimetric detections of five wound biomarkers and/or wound condition indicators (pH, glucose, urea, uric acid, and total protein), leading to the holistic assessment of inflammation and infection. A biogenic carbon dot synthesized using an amino acid and a polymer precursor is doped in an agarose hydrogel matrix for constructing enzymatic sensors (glucose, urea, and uric acid) and dye-based sensors (pH and total protein).

View Article and Find Full Text PDF

Injury to the central nervous system (CNS) provokes an inflammatory reaction and secondary damage that result in further tissue damage and destruction of neurons away from the injury site. Upon injury, expression of connexin 43 (Cx43), a gap junction protein, upregulates and is responsible for the spread and amplification of cell death signals through these gap junctions. In this study, we hypothesise that the downregulation of Cx43 by scaffold-mediated controlled delivery of antisense oligodeoxynucleotide (asODN), would minimise secondary injuries and cell death, and thereby support tissue regeneration after nerve injuries.

View Article and Find Full Text PDF

Introduction: Chronic wounds are a major drain on healthcare resources and can lead to substantial reductions in quality of life for those affected. Moreover, they often precede serious events such as limb amputations and premature death. In the long run, this burden is likely to escalate with an ageing population and lifestyle diseases such as obesity.

View Article and Find Full Text PDF

Scaffolds can promote the healing of burns and chronic skin wounds but to date have suffered from issues with achieving full skin integration. Here, we characterise the wound response by both tissue integration and re-epithelialization to a scaffold using wet electrospinning to fabricate 3D fibrous structures. Two scaffold materials were investigated: poly(ε-caprolactone) (PCL) and PCL + 20% rat tail type 1 collagen (PCL/Coll).

View Article and Find Full Text PDF

Injuries within the peripheral nervous system (PNS) lead to sensory and motor deficits, as well as neuropathic pain, which strongly impair the life quality of patients. Although most current PNS injury treatment approaches focus on using growth factors/small molecules to stimulate the regrowth of the injured nerves, these methods neglect another important factor that strongly hinders axon regeneration-the presence of axonal inhibitory molecules. Therefore, this work sought to explore the potential of pathway inhibition in promoting sciatic nerve regeneration.

View Article and Find Full Text PDF

Although cell membrane-coated fiber scaffolds can be useful for regenerative medicine by presenting both cell surface antigens and topographical cues, it remains unknown whether changes in cellular behavior on cell membrane-coated scaffolds are due to specific cell-cell interactions. In this work, the effects of scaffold fiber diameters and surface charges on the cell membrane coating efficiency were explored. Furthermore, fibroblast membrane-coated scaffolds improved the growth of human keratinocytes as compared to red blood cell membrane-coated and plain scaffolds.

View Article and Find Full Text PDF

Current treatment approaches toward spinal cord injuries (SCI) have mainly focused on overcoming the inhibitory microenvironment that surrounds lesion sites. Unfortunately, the mere modulation of the cell/tissue microenvironment is often insufficient to achieve desired functional recovery. Therefore, stimulating the intrinsic growth ability of injured neurons becomes crucial.

View Article and Find Full Text PDF

The simple and versatile CRISPR/Cas9 system is a promising strategy for genome editing in mammalian cells. Generally, the genome editing components, namely Cas9 protein and single-guide RNA (sgRNA), are delivered in the format of plasmids, mRNA, or ribonucleoprotein (RNP) complexes. In particular, non-viral approaches are desirable as they overcome the safety concerns posed by viral vectors.

View Article and Find Full Text PDF

The regeneration of injured neurons over long injury distances remains suboptimal. In order to successfully stimulate nerve regrowth, potent biomolecules are necessary. Furthermore, reproducible and translatable methods to test the potency of candidate drugs for enhancing nerve regeneration over long axotomy distances are also needed.

View Article and Find Full Text PDF

The clustered regularly interspaced short palindromic repeat (CRISPR) systems have a wide variety of applications besides precise genome editing. In particular, the CRISPR/dCas9 system can be used to control specific gene expression by CRISPR activation (CRISPRa) or interference (CRISPRi). However, the safety concerns associated with viral vectors and the possible off-target issues of systemic administration remain huge concerns to be safe delivery methods for CRISPR/Cas9 systems.

View Article and Find Full Text PDF

Neurons of the central nervous system do not regenerate spontaneously after injury. As such, biofunctional tissue scaffolds have been explored to provide a growth-promoting environment to enhance neural regeneration. In this regard, aligned electrospun fibers have proven invaluable for regeneration by offering guidance for axons to cross the injury site.

View Article and Find Full Text PDF

Clinically, rehabilitation is one of the most common treatment options for traumatic injuries. Despite that, recovery remains suboptimal and recent breakthroughs in regenerative approaches may potentially improve clinical outcomes. To date, there have been numerous studies on the utilization of either rehabilitative or regenerative strategies for traumatic injury treatment.

View Article and Find Full Text PDF

MicroRNAs effectively modulate protein expression and cellular response. Unfortunately, the lack of robust nonviral delivery platforms has limited the therapeutic application of microRNAs. Additionally, there is a shortage of drug-screening platforms that are directly translatable from in vitro to in vivo.

View Article and Find Full Text PDF

Genome editing, especially via the simple and versatile type II CRISPR/Cas9 system, offers an effective avenue to precisely control cell fate, an important aspect of tissue regeneration. Unfortunately, most CRISPR/Cas9 non-viral delivery strategies only utilise micro-/nano-particle delivery methods. While these approaches provide reasonable genomic editing efficiencies, their systemic delivery may lead to undesirable off-target effects.

View Article and Find Full Text PDF

Acute wound healing is an orderly process of four overlapping events: haemostasis, inflammation, proliferation and remodelling. A drug delivery system with a temporal control of release could promote each of these events sequentially. However, acute wound healing normally proceeds very well in healthy individuals and there is little need to promote it.

View Article and Find Full Text PDF
Article Synopsis
  • The loss of oligodendrocytes and myelin sheaths due to CNS injuries leads to significant functional impairment, and current remyelination strategies are limited.
  • A new scaffolding system that allows for non-viral delivery of microRNAs (specifically miR-219/miR-338) promotes the differentiation and maturation of oligodendrocytes, enhancing myelination in vitro and in vivo after spinal cord injuries.
  • Treatment with miR-219/miR-338 results in a higher number of oligodendroglial cells and more effective myelin sheath formation, demonstrating the potential of this approach for improving remyelination in the central nervous system.
View Article and Find Full Text PDF

Spinal cord injury (SCI) is a traumatic event which leads to the loss of sensory and motor functions of the body. Complete recovery of these functions are usually limited due to the inability of the damaged axons within the central nervous system (CNS) to regenerate autonomously. Here, a combinatorial regenerative and rehabilitative approach to regrow damaged axons was proposed.

View Article and Find Full Text PDF

Axons damaged by traumatic injuries are often unable to spontaneously regenerate in the adult central nervous system (CNS). Although the peripheral nervous system (PNS) has some regenerative capacity, its ability to regrow remains limited across large lesion gaps due to scar tissue formation. Nucleic acid therapy holds the potential of improving regeneration by enhancing the intrinsic growth ability of neurons and overcoming the inhibitory environment that prevents neurite outgrowth.

View Article and Find Full Text PDF