To surmount the shortcomings of powder-based catalysts and small electrode sizes, the development of meter-scale integrated electrode materials is essential for practical electrocatalytic applications, which requires fine control over the effective surface grafting of catalytic active sites on large-size electrodes as well as addressing the challenge of balancing cost-effective and large-scale manufacturing with highly active and stable operation. Herein, we report a low-cost, facile, and scalable method for directly constructing meter-scale single-molecule-integrated catalytic electrodes using commercially available, flexible, and size-tailored conductive carbon textiles (e.g.
View Article and Find Full Text PDFImportance: There is a need to identify the best performing risk prediction model for sentinel lymph node biopsy (SLNB) positivity in melanoma.
Objective: To comprehensively review the characteristics and discriminative performance of existing risk prediction models for SLNB positivity in melanoma.
Data Sources: Embase and MEDLINE were searched from inception to May 1, 2024, for English language articles.
Neurochemical imbalance is a contributing factor to neurological symptoms in multiple sclerosis (MS). The matured myelin sheath is crucial for substance transportation within the extracellular space (ECS) and for maintaining local homeostasis. Therefore, we hypothesize that disturbed ECS transportation following demyelinating lesions might lead to neurochemical imbalance in MS.
View Article and Find Full Text PDFIn situ high-pressure single-crystal X-ray diffraction and Raman spectroscopy analyses were performed on a natural bismutotantalite with an α-BiTaO structure. The results indicate that α-BiTaO transforms into an orthorhombic phase (HP γ-BiTaO), likely through an intermediate orthorhombic phase (HP β-BiTaO). The transition pressures are 11.
View Article and Find Full Text PDFHybrid multicompartment artificial architectures, inherited from different compartmental systems, possess separate microenvironments that can perform different functions. Herein, a hybrid compartmentalized architecture via hybridizing ferritin nanocage (Fn) with non-aqueous droplets using aminated-modified amphiphilic gelatin (AGEL) is proposed, which enables the generation of compartmentalized emulsions with hybrid multicompartments. The resulting compartmentalized emulsions are termed "hybrasome".
View Article and Find Full Text PDFPhotocatalytic hydrogen production through water splitting represents a promising strategy to store solar energy as chemical energy. Current photocatalysts primarily focus on traditional semiconductor materials, such as metal oxides, sulfides, nitrides, g-CN, etc. However, these materials often suffer from large bandgap and fast charge recombination, which limit sunlight utilization and result in unsatisfactory photon conversion efficiency.
View Article and Find Full Text PDFThe rise of wearable electronics demands flexible energy storage solutions like flexible fiber energy storage devices (FESDs), known for their flexibility and portability. However, it remains difficult for existing fabrication methods (typically, finite-coating, thermal-drawing, and solution-extrusion) to simultaneously achieve desirable electrochemical performances and fast production of FESDs. Here, a new scalable coating-extrusion method is developed, utilizing a novel extruded spinneret with tapered apertures to create dual pressure zones.
View Article and Find Full Text PDFElectronic noses have been widely used in industrial production, food preservation, agricultural product storage, environmental monitoring, and other fields. However, due to the cross-sensitivity of gas-sensing responses, accurately measuring the concentration of mixed gases remains challenging. To address this issue, this study attempts to determine the number of state variables that produce the cross-influence based on the experimental data, establish the state space model from the equivalent circuit model, and obtain model parameters through parameter correlation iterative algorithms and a Kalman filter.
View Article and Find Full Text PDFThe delicate construction of electrocatalysts with high catalytic activity is a strategic method to enhance the kinetics of lithium-sulfur batteries (LSBs). Adjusting the local structure of the catalyst is always crucial for understanding the structure-activity relationship between atomic structure and catalyst performance. Here, in situ induction of electron-deficient B enables phase engineering MoC, realizing the transition from hexagonal (h-MoC) to cubic phase (c-B-MoC).
View Article and Find Full Text PDFThe construction of heterojunctions can effectively inhibit the rapid recombination of photogenerated electrons and holes in photocatalysts and offers great potential for pollutant degradation. In this study, a Z-scheme heterojunction g-CN/WO photocatalyst was synthesized using a combination of hydrothermal and calcination methods. The photocatalytic degradation performance was tested under visible light; the degradation efficiency of Rh B reached 97.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Gallium oxide (GaO), an ultrawide bandgap semiconductor, is an ideal material for solar-blind photodetectors, but challenges such as low responsivity and response speed persist. In this paper, one-dimensional (1D) GaO nanorods were designed to achieve high photodetection performance due to their effective light absorption and light field confinement. Through modulating source concentration, pH value, temperature, and reaction time, 1D β-GaO nanorods were controllably fabricated using a cost-effective hydrothermal method, followed by post-annealing.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
The formation of ice due to global climate change poses challenges across multiple industries. Traditional anti-icing technologies often suffer from low efficiency, high energy consumption, and environmental pollution. Photothermal and hydrophobic surfaces with nano-micro structures (PHS-NMSs) offer innovative solutions to these challenges due to their exceptional optical absorption, heat conversion capabilities, and unique surface water hydrophobic characteristics.
View Article and Find Full Text PDFIn recent years, halide perovskite materials have been extensively studied by researchers due to their excellent optoelectronic characteristics. Unlike traditional semiconductors, halide perovskites possess unique ionic crystal structures, which makes it easier to perform facile composition engineering to tailor their physical and chemical properties. Ion exchange is a popular post-treatment strategy to achieve composition engineering in perovskites, and various ion exchange processes have been used to modify the structural and functional features of prefabricated perovskites to meet the requirements of desired applications.
View Article and Find Full Text PDFThe progression of SiC MOSFET technology from planar to trench structures requires optimized gate oxide layers within the trench to enhance device performance. In this study, we investigated the interface characteristics of HfO and SiO/HfO gate dielectrics grown by atomic layer deposition (ALD) on SiC trench structures. The trench structure morphology was revealed using scanning electron microscopy (SEM).
View Article and Find Full Text PDFThis paper reports on the effect of the micro-morphological characteristics of stainless steel electrodes on vacuum breakdown properties under the action of a strong electric field generated by high-power electric pulses. Using chemical passivation modification and atomic layer deposition (ALD) technology, alumina composite films were prepared on the surface of the stainless steel electrodes to reshape the surface microstructure of the electrodes. The surface morphology features of the electrodes were characterized in detail.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Exoskeletons play a crucial role in joint healthcare by providing targeted support and rehabilitation for individuals with musculoskeletal diseases. As an assistive device, the accurate monitoring of the user's joint signals and exoskeleton status using wearable sensors is essential to ensure the efficiency of conducting complex tasks in various scenarios. However, balancing sensitivity and stretchability in wearable devices for exoskeleton applications remains a significant challenge.
View Article and Find Full Text PDFMetasurface-based longitudinal modulation introduces the propagation distance as a new degree of freedom, extending the light modulation with metasurfaces from 2D to 3D space. However, relevant longitudinal studies have been constrained to designing the metasurface of half-wave plate (HWP) meta-atoms and generating either non-focused or two-channel vortex and vector beams. In this study, we propose a metasurface composed of quarter-wave plate (QWP) meta-atoms to generate the longitudinal multi-channel focused vortex and vector beams.
View Article and Find Full Text PDFExudate management and cell activity enhancement are vital to complicated wound healing. However, current exudate management dressings indiscriminately remove exudate, which is detrimental to cell activity enhancement. Herein, a novel class of electroactive bilayer (cMO/PVA) dressing is developed by constructing manganese oxide nanoneedle-clusters decorated commercial carbon cloth (MO), in situ casting polyvinyl alcohol (PVA) hydrogel, and finally charging.
View Article and Find Full Text PDFObjective: This study was aimed to analyze 10 pediatric cases of pigmented villonodular synovitis (PVNS) of the knee to elucidate their clinical features, diagnosis, treatments, and prognosis for providing reference regarding its clinical management in children.
Methods: A retrospective analysis was made pertaining to the clinical manifestations, magnetic resonance imaging (MRI) findings, pathology, immunohistochemical results, treatment methods, and follow-up outcomes of 10 pediatric PVNS patients of the knee treated from January 2022 to January 2024 at our hospital. They were compared and analyzed with existing literature.
Background And Aims: We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing interleukin (IL)-23p19 antagonists with ustekinumab, stratified by prior biologic exposure, in patients with moderate-to-severe Crohn's disease (CD).
Methods: Through a systematic review through August 17, 2024, we identified phase 2 and 3 RCTs comparing IL-23p19 antagonists vs. ustekinumab in adults with moderate-to-severe CD.
J Otolaryngol Head Neck Surg
March 2025
ImportanceSelective, modified radical, and radical neck dissections are common surgical procedures that can result in significant musculoskeletal issues of the neck and shoulder. Quality-of-life evaluations after neck dissection must assess and quantify these dysfunctions to allow subsequent comparison of outcomes after different treatments.ObjectiveThere is no validated Spanish-language questionnaire designed to evaluate neck and shoulder dysfunction after cervical lymphadenectomy.
View Article and Find Full Text PDFPancreatic cancer is one of the most common malignant tumors of the digestive system, with the majority of patients not succumbing to the primary tumor but rather to metastasis. Epithelial-mesenchymal transition (EMT) is abnormally activated in numerous cancers, whereby it promotes tumor cell migration and invasion. Yes-associated protein 1 (YAP1) is commonly overexpressed in various cancer types and plays an oncogenic role.
View Article and Find Full Text PDFSesquiterpene synthases (STSs) catalyze carbocation cascade reactions with various hydrogen shifts and cyclization patterns that generate structurally diverse sesquiterpene skeletons. However, the molecular basis for hydrogen shifts and cyclizations, which determine STS product distributions, remains enigmatic. In this study, an elusive STS SydA was identified in the biosynthesis of sydonol, which synthesized a new bisabolene-type sesquiterpene with a unique saturated terminal pendant isopentane.
View Article and Find Full Text PDFObjective: Oxidative stress activates the reactive oxygen species (ROS) and excessive ROS can damage skin cells, initiating oxidative stress responses that contribute to inflammation, aging, and other skin issues. As a resident skin bacterium, Cutibacterium acnes (C. acnes) plays an important role in maintaining skin homeostasis and provides antioxidant benefits.
View Article and Find Full Text PDF