Publications by authors named "Jiafu Ye"

In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements.

View Article and Find Full Text PDF

2D materials, of which the carrier type and concentration are easily tuned, show tremendous superiority in electronic and optoelectronic applications. However, the achievements are still quite far away from practical applications. Much more effort should be made to further improve their performance.

View Article and Find Full Text PDF

For each generation of semiconductors, the issue of doping techniques is always placed at the top of the priority list since it determines whether a material can be used in the electronic and optoelectronic industry or not. When it comes to 2D materials, significant challenges have been found in controllably doping 2D semiconductors into p- or n-type, let alone developing a continuous control of this process. Here, a unique self-modulated doping characteristic in 2D layered materials such as PtSSe, PtS Se , PdSe , and WSe is reported.

View Article and Find Full Text PDF

Hot carrier harvest could save 30% energy loss in solar cells. So far, however, it is still unreachable as the photoexcited hot carriers are short-lived, ∼1 ps, determined by a rapid relaxation process, thus invalidating any reprocessing efforts. Here, we propose and demonstrate a feasible route to reserve hot electrons for efficient collection.

View Article and Find Full Text PDF

Blackbody-sensitive room-temperature infrared detection is a notable development direction for future low-dimensional infrared photodetectors. However, because of the limitations of responsivity and spectral response range for low-dimensional narrow bandgap semiconductors, few low-dimensional infrared photodetectors exhibit blackbody sensitivity. Here, highly crystalline tellurium (Te) nanowires and two-dimensional nanosheets were synthesized by using chemical vapor deposition.

View Article and Find Full Text PDF

2D layered photodetectors have been widely researched for intriguing optoelectronic properties but their application fields are limited by the bandgap. Extending the detection waveband can significantly enrich functionalities and applications of photodetectors. For example, after breaking through bandgap limitation, extrinsic Si photodetectors are used for short-wavelength infrared or even long-wavelength infrared detection.

View Article and Find Full Text PDF

Low-symmetry 2D materials with unique anisotropic optical and optoelectronic characteristics have attracted a lot of interest in fundamental research and manufacturing of novel optoelectronic devices. Exploring new and low-symmetry narrow-bandgap 2D materials will be rewarding for the development of nanoelectronics and nano-optoelectronics. Herein, sulfide niobium (NbS ), a novel transition metal trichalcogenide semiconductor with low-symmetry structure, is introduced into a narrowband 2D material with strong anisotropic physical properties both experimentally and theoretically.

View Article and Find Full Text PDF

Broadband infrared photodetectors based on two-dimensional (2D) materials which are the research focus in the infrared field, have wide applications in remote sensing, thermal imaging, and astronomy observation. In this article, the photodetector based on 2D ferromagnetic material CoSe is studied at room temperature, demonstrating the air-stable, broadband, and up to long wavelength properties. The CoSe material is applied to infrared photodetectors for the first time.

View Article and Find Full Text PDF

In recent years, as a direct wide band gap semiconductor, zinc oxide (ZnO) nanomaterial has attracted a lot of attention. However, the widely investigated ZnO materials are strongly limited in fast-response and broadband photodetectors due to their inherent weaknesses, so an effective structure or mechanism of ZnO nanostructure photodetector is greatly needed. In this work, a photogating-controlled photodetector based on a ZnO nanosheet-HfO-lightly doped Si architecture is demonstrated.

View Article and Find Full Text PDF