G protein-coupled receptors (GPCRs) are one of the major drug targets. In recent years, computational drug design for GPCRs has mainly focused on static structures obtained through X-ray crystallography, cryogenic electron microscopy (cryo-EM) or in silico modelling as a starting point for virtual screening campaigns. However, GPCRs are highly flexible entities with the ability to adopt different conformational states that elicit different physiological responses.
View Article and Find Full Text PDFProteorhodopsins are widely distributed photoreceptors from marine bacteria. Their discovery revealed a high degree of evolutionary adaptation to ambient light, resulting in blue- and green-absorbing variants that correlate with a conserved glutamine/leucine at position 105. On the basis of an integrated approach combining sensitivity-enhanced solid-state nuclear magnetic resonance (ssNMR) spectroscopy and linear-scaling quantum mechanics/molecular mechanics (QM/MM) methods, this single residue is shown to be responsible for a variety of synergistically coupled structural and electrostatic changes along the retinal polyene chain, ionone ring, and within the binding pocket.
View Article and Find Full Text PDFCabotegravir is an integrase strand transfer inhibitor (INSTI) for HIV treatment and prevention. Cabotegravir-based long-acting pre-exposure prophylaxis (PrEP) presents an emerging paradigm for infectious disease control. In this scheme, a combination of a high efficacy and low solubility of anti-infection drugs permits the establishment of a pharmaceutical firewall in HIV-vulnerable groups over a long period.
View Article and Find Full Text PDFBase pairs are fundamental building blocks of RNA. The base pairs of low stability are often critical in RNA functions. Here, we develop a solid-state NMR-based water-RNA exchange spectroscopy (WaterREXSY) to characterize RNA in solid.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) spectroscopy is a powerful and popular technique for probing the molecular structures, dynamics and chemical properties. However the conventional NMR spectroscopy is bottlenecked by its low sensitivity. Dynamic nuclear polarization (DNP) boosts NMR sensitivity by orders of magnitude and resolves this limitation.
View Article and Find Full Text PDFThe functional mechanism of the light-driven sodium pump rhodopsin 2 (KR2) raises fundamental questions since the transfer of cations must differ from the better-known principles of rhodopsin-based proton pumps. Addressing these questions must involve a better understanding of its photointermediates. Here, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance spectroscopy on cryo-trapped photointermediates shows that the K-state with 13- retinal directly interconverts into the subsequent L-state with distinct retinal carbon chemical shift differences and an increased out-of-plane twist around the C14-C15 bond.
View Article and Find Full Text PDFUnderstanding the conformational sampling of translation-arrested ribosome nascent chain complexes is key to understand co-translational folding. Up to now, coupling of cysteine oxidation, disulfide bond formation and structure formation in nascent chains has remained elusive. Here, we investigate the eye-lens protein γB-crystallin in the ribosomal exit tunnel.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2020
The RHO gene encodes the G-protein-coupled receptor (GPCR) rhodopsin. Numerous mutations associated with impaired visual cycle have been reported; the G90D mutation leads to a constitutively active mutant form of rhodopsin that causes CSNB disease. We report on the structural investigation of the retinal configuration and conformation in the binding pocket in the dark and light-activated state by solution and MAS-NMR spectroscopy.
View Article and Find Full Text PDFAlthough the rapid development of sensitivity-enhanced solid-state NMR (ssNMR) spectroscopy based on dynamic nuclear polarization (DNP) has enabled a broad range of novel applications in material and life sciences, further methodological improvements are needed to unleash the full potential of DNP-ssNMR. Here, a new methyl-based toolkit for exploring protein structures is presented, which combines signal-enhancement by DNP with heteronuclear Overhauser effect (hetNOE), carbon-carbon-spin diffusion (SD) and strategically designed isotope-labeling schemes. It is demonstrated that within this framework, methyl groups can serve as dynamic sensors for probing local molecular packing within proteins.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) are the most important signal transducers in higher eukaryotes. Despite considerable progress, the molecular basis of subtype-specific ligand selectivity, especially for peptide receptors, remains unknown. Here, by integrating DNP-enhanced solid-state NMR spectroscopy with advanced molecular modeling and docking, the mechanism of the subtype selectivity of human bradykinin receptors for their peptide agonists has been resolved.
View Article and Find Full Text PDFThe human transporter associated with antigen processing (TAP) is a 150 kDa heterodimeric ABC transport complex that selects peptides for export into the endoplasmic reticulum and subsequent loading onto major histocompatibility complex class I molecules to trigger adaptive immune responses against virally or malignantly transformed cells. To date, no atomic-resolution information on peptide-TAP interactions has been obtained, hampering a mechanistic understanding of the early steps of substrate translocation catalyzed by TAP. Here, we developed a mild method to concentrate an unstable membrane protein complex and combined this effort with dynamic nuclear polarization enhanced magic angle spinning solid-state NMR to study this challenging membrane protein-substrate complex.
View Article and Find Full Text PDFProteorhodopsins (PRs) found in marine microbes are the most abundant retinal-based photoreceptors on this planet. PR variants show high levels of environmental adaptation, as their colors are tuned to the optimal wavelength of available light. The two major green and blue subfamilies can be interconverted through a L/Q point mutation at position 105.
View Article and Find Full Text PDFCopper-zinc superoxide dismutase 1 (SOD1) is present in the protein aggregates deposited in motor neurons of amyotrophic lateral sclerosis (ALS) patients. ALS is a neurodegenerative disease that can be either sporadic (ca. 90%) or familial (fALS).
View Article and Find Full Text PDFDynamic nuclear polarization (DNP) enhances the sensitivity of solid-state NMR (SSNMR) spectroscopy by orders of magnitude and, therefore, opens possibilities for novel applications from biology to materials science. This multitude of opportunities implicates a need for high-performance polarizing agents, which integrate specific physical and chemical features tailored for various applications. Here, we demonstrate that for the biradical bTbK in complex with captisol (CAP), a β-cyclodextrin derivative, host-guest assembling offers a new and easily accessible approach for the development of new polarizing agents.
View Article and Find Full Text PDFThe proteorhodopsin family consists of retinal proteins of marine bacterial origin with optical properties adjusted to their local environments. For green proteorhodopsin, a highly specific mutation in the EF loop, A178R, has been found to cause a surprisingly large redshift of 20 nm despite its distance from the chromophore. Here, we analyze structural and functional consequences of this EF loop mutation by time-resolved optical spectroscopy and solid-state NMR.
View Article and Find Full Text PDFThe accumulation of soluble toxic beta-amyloid (Aβ) aggregates is an attractive hypothesis for the role of this peptide in the pathology of Alzheimer's disease. We have introduced sedimentation through ultracentrifugation, either by magic angle spinning (in situ) or preparative ultracentrifuge (ex situ), to immobilize biomolecules and make them amenable for solid-state NMR studies (SedNMR). In situ SedNMR is used here to address the kinetics of formation of soluble Aβ assemblies by monitoring the disappearance of the monomer and the appearance of the oligomers simultaneously.
View Article and Find Full Text PDFcis-Diamminedichloroplatinum(II) (cisplatin) is able to interact with human superoxide dismutase (hSOD1) in the disulfide oxidized apo form with a dissociation constant of 37 ± 3 μM through binding cysteine 111 (Cys111) located at the edge of the subunit interface. It also binds to Cu(2)-Zn(2) and Zn(2)-Zn(2) forms of hSOD1. Cisplatin inhibits aggregation of demetalated oxidized hSOD1, and it is further able to dissolve and monomerize oxidized hSOD1 oligomers in vitro and in cell, thus indicating its potential as a leading compound for amyotrophic lateral sclerosis.
View Article and Find Full Text PDFThe amyloid fibrils of beta-amyloid (Aβ) peptides play important roles in the pathology of Alzheimer's disease. Comprehensive solid-state NMR (SSNMR) structural studies on uniformly isotope-labeled Aβ assemblies have been hampered for a long time by sample heterogeneity and low spectral resolution. In this work, SSNMR studies on well-ordered fibril samples of Aβ(40) with an additional N-terminal methionine provide high-resolution spectra which lead to an accurate structural model.
View Article and Find Full Text PDFDemetalated superoxide dismutase (SOD1) is a transient species, fibrillogenic in nature and of biomedical interest. It is a conformationally disordered protein difficult to characterize. We have developed a strategy based on the NMR investigation of a crystalline species characterized by X-ray crystallography and on the comparison of the solid-state-solution-state chemical shifts.
View Article and Find Full Text PDFWe show here that by combining tailored approaches based on ultrafast (60 kHz) MAS on the Co(II)-replaced catalytic domain of matrix metalloproteinase 12 (CoMMP-12) we can observe and assign, in a highly paramagnetic protein in the solid state, (13)C and even (1)H resonances from the residues coordinating the metal center. In addition, by exploiting the enhanced relaxation caused by the paramagnetic center, and the low power irradiation enabled by the fast MAS, this can be achieved in remarkably short times and at very high field (21.2 T), with only less than 1 mg of sample.
View Article and Find Full Text PDFThe combination of a red light PDT agent and a Pt(ii)-based chemotherapeutic drug at the molecular level maintains the intrinsic functions of each unit; the conjugated complexes exhibit remarkable photocytoxicity and demonstrate potential to serve as agents for DNA-targeting PDT as well as red light photochemotherapy.
View Article and Find Full Text PDFMultinuclear Pt(II) complexes represent a novel class of antitumor agents. In this work, a dinuclear monofunctional Pt(II) complex {[cis-Pt(NH(3))(2)Cl](2)(4,4'-methylenedianiline)}(NO(3))(2) (1) was synthesized and characterized by (1)H NMR, electrospray mass spectrometry, and elemental analysis. The 2D [(1)H,(15)N] heteronuclear single quantum coherence NMR spectra of (15)N-labeled 1 revealed that the cationic core of this water-soluble complex hardly hydrolyzes in aqueous solution and reacts very slowly with glutathione.
View Article and Find Full Text PDF