Microgrippers are essential for assembly and manipulation at the micro- and nano-scales, facilitating important applications in microelectronics, MEMS, and biomedical engineering. To guarantee the safe handling of delicate materials and micro-objects, a microgripper needs to be designed to operate with exceptional precision, rapid response, user-friendly operation, strong reliability, and low power consumption. In this study, we develop an electrothermal actuated microgripper with Al-SiO bimorphs as the primary structural element.
View Article and Find Full Text PDFThe morbidity and mortality of cancer are rising rapidly worldwide and immunotherapy has become an effective means to curb the progress of cancer. Sirtuin-1(SIRT1) is a NAD+ -dependent deacetylase that plays a key role in cancer development and immune regulation through mediating a variety of signaling pathways. Targeting SIRT1 in immunotherapy could enhance or erod immune responses against cancer cells, while SIRT1 activator and inhibitors are being developed as potential antineoplastic agents with important implications in clinic.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Solar thermal utilization has broad applications in a variety of fields. Currently, maximizing the photo-thermal conversion efficiency remains a research hotspot in this field. The exquisite plant structures in nature have greatly inspired human structural design across many domains.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
With the rapid development of micro/nanofabrication technologies, the concept of transformable kirigami has been applied for device fabrication in the microscopic world. However, most nano-kirigami structures and devices were typically fabricated or transformed at fixed positions and restricted to limited mechanical motion along a single axis due to their small sizes, which significantly limits their functionalities and applications. Here, we demonstrate the precise shaping and position control of nano-kirigami microrotors.
View Article and Find Full Text PDFWriting spatial information on ultrafast all-optical switching is essential for constructing ultrafast processing units in photonic applications, such as optical communication and computing networks. However, most methods ignore the fabrication and imaging of controllable switching area, limiting its spatial information and the further design in ultrafast devices. Here, we propose a method to spatially write in ultrafast all-optical switching based on MAPbI perovskite with nanocone structure and visualize the switching effect in arbitrary designed area.
View Article and Find Full Text PDFThe electron-phonon (e-ph) interactions are pivotal in shaping the electrical and thermal properties, and in particular, determining the carrier dynamics and transport behaviors in optoelectronic devices. By employing pump-probe spectroscopy and ultrafast microscopy, the consequential role of e-ph coupling strength in the spatiotemporal evolution of hot electrons is elucidated. Thermal transport across the metallic interface is controlled to regulate effective e-ph coupling factor G in Au and Au/Cr heterostructure, and their impact on nonequilibrium transport of hot electrons is examined.
View Article and Find Full Text PDFStrong interaction between circularly polarized light and chiral plasmonic nanostructures can enable controllable asymmetric photophysical processes, such as selective chiral switching of a plasmonic nanorod-dimer. Here, we uncover the underlying physics that governs this chiral switching by theoretically investigating the interplay between asymmetric photothermal and optomechanical effects. We find that the photothermally induced local temperature rises could play a key role in activating the dynamic chiral configurations of a plasmonic dimer due to the temperature-sensitive molecular linkages located at the gap region.
View Article and Find Full Text PDFIn femtosecond laser fabrication, the laser-pulse train shows great promise in improving processing efficiency, quality, and precision. This research investigates the influence of pulse number, pulse interval, and pulse energy ratio on the lateral and longitudinal ultrafast melting process using an experiment and the molecular dynamics coupling two-temperature model (MD-TTM model), which incorporates temperature-dependent thermophysical parameters. The comparison of experimental and simulation results under single and double pulses proves the reliability of the MD-TTM model and indicates that as the pulse number increases, the melting threshold at the edge region of the laser spot decreases, resulting in a larger diameter of the melting region in the 2D lateral melting results.
View Article and Find Full Text PDFThe nano-kirigami metasurfaces have controllable 3D geometric parameters and dynamic transformation functions and therefore provide a strong spectral regulation capability of thermal emission. Here, the authors propose and demonstrate a dynamic and multifunctional thermal emitter based on deformable nano-kirigami structures, which can be actuated by electronic bias or mechanical compression. Selective emittance and the variation of radiation intensity/wavelength are achieved by adjusting the geometric shape and the transformation of the structures.
View Article and Find Full Text PDFScanning near-field optical microscopy (SNOM) offers a means to reach a fine spatial resolution down to ~ 10 nm, but unfortunately suffers from low transmission efficiency of optical signal. Here we present design and 3D printing of a fiber-bound polymer-core/gold-shell spiral-grating conical tip that allows for coupling the inner incident optical signal to the outer surface plasmon polariton with high efficiency, which then adiabatically transport, squeeze, and interfere constructively at the tip apex to form a plasmonic superfocusing spot with tiny size and high brightness. Numerical simulations and optical measurements show that this specially designed and fabricated tip has 10% transmission efficiency, ~ 5 nm spatial resolution, 20 dB signal-to-noise ratio, and 7000 pixels per second fast scanning speed.
View Article and Find Full Text PDFNano-kirigami metasurfaces have attracted increasing attention due to their ease of three-dimension (3D) nanofabrication, versatile shape transformations, appealing manipulation capabilities and rich potential applications in nanophotonic devices. Through adding an out-of-plane degree of freedom to the double split-ring resonators (DSRR) by using nano-kirigami method, in this work we demonstrate the broadband and high-efficiency linear polarization conversion in the near-infrared wavelength band. Specifically, when the two-dimensional DSRR precursors are transformed into 3D counterparts, a polarization conversion ratio (PCR) of more than 90% is realized in wide spectral range from 1160 to 2030 nm.
View Article and Find Full Text PDFNano-kirigami method enables rich diversity of structural geometries that significantly broaden the functionalities of optical micro/nano-devices. However, the methodologies of various nano-kirigami are still limited and as a result, the chiral nano-kirigami structure has yet been pushed to the limit for operation at visible wavelength region. Here, the merits of the various nano-kirigami strategies are comprehensively explored and bio-inspired nano-cilia metasurface with enhanced circular dichroism at visible wavelengths is demonstrated.
View Article and Find Full Text PDFDynamic color display can be realized by tunable optical metasurfaces based on the compositional or structural control. However, it is still a challenge to realize the efficient modulation by a single-field method. Here, we report a novel compositional and mechanical dual-altered rechargeable metasurface for reversible and broadband optical reconfiguration in both visible and near-infrared wavelength regions.
View Article and Find Full Text PDFCircular dichroism (CD), as one of the most representative chiroptical effects, provides a simple strategy for the detection and characterization of the molecular chirality. The enhancement and sign reversal of CD are of great importance for its practical applications in chiral bio-sensing, chirality switching and optical filtering, etc. Here, we realize considerable adjustments and the sign reversal of CD in quasi-three-dimensional (quasi-3D) combined Archimedean spiral nanostructures.
View Article and Find Full Text PDFMolecular chirality recognition plays a pivotal role in chiral generation and transfer in living systems and makes important contribution to the development of diverse applications spanning from chiral separation to soft nanorobots. To detect chirality recognition, most of the molecular sensors described to date are based on the design and preparation of the host-guest complexation with chromophore or fluorophore at the reporter unit. Nevertheless, the involved tedious procedures and complicated chemical syntheses hamper their practical applications.
View Article and Find Full Text PDFMetasurfaces, with artificially designed ultrathin and compact optical elements, enable versatile manipulation of the amplitude, phase, and polarization of light waves. While most of the metasurfaces are static and passive, here we propose a reprogrammable metasurface based on the state-of-art electromechanical nano-kirigami, which allows for independent manipulation of pixels at visible wavelengths through mechanical deformation of the nanostructures. By incorporating electrostatic forces between the top suspended gold nano-architectures and bottom silicon substrate, out-of-plane deformation of each pixel and the associated phase retardation are independently controlled by applying single voltage to variable pixels or exerting programmable voltage distribution on identical pixels.
View Article and Find Full Text PDFResearch (Wash D C)
September 2021
Many real-world applications, including adaptive radar scanning and smart stealth, require reconfigurable multifunctional devices to simultaneously manipulate multiple degrees of freedom of electromagnetic (EM) waves in an on-demand manner. Recently, kirigami technique, affording versatile and unconventional structural transformation, has been introduced to endow metamaterials with the capability of controlling EM waves in a reconfigurable manner. Here, we report for a kirigami-inspired sparse meta-architecture, with structural density of 1.
View Article and Find Full Text PDFHere we demonstrate an optical propeller chirality in artificially twisted meta-molecules, which is remarkably different from conventional optical helical chirality. Giant circular dichroism (CD) is realized in a single layer of meta-molecule array by utilizing the surface lattice resonances that are formed by the coupling of chiral electric quadrupole modes to the diffractive lattice mode. Due to the special twist of the propeller blades, the periodic meta-molecule array is hybridized by unit cells with two different chiral centers.
View Article and Find Full Text PDFAn enriched environment is widely used to improve domestic animals' welfare and promote their natural behaviors. Music can reduce abnormal behavior in humans, nonhuman primates, and rodents. However, little is known about the effects of music on pigs.
View Article and Find Full Text PDFKirigami, with facile and automated fashion of three-dimensional (3D) transformations, offers an unconventional approach for realizing cutting-edge optical nano-electromechanical systems. Here, we demonstrate an on-chip and electromechanically reconfigurable nano-kirigami with optical functionalities. The nano-electromechanical system is built on an Au/SiO/Si substrate and operated via attractive electrostatic forces between the top gold nanostructure and bottom silicon substrate.
View Article and Find Full Text PDFCavity design is crucial for single-mode semiconductor lasers such as the ubiquitous distributed feedback and vertical-cavity surface-emitting lasers. By recognizing that both of these optical resonators feature a single mid-gap mode localized at a topological defect in the one-dimensional lattice, we upgrade this topological cavity design concept into two dimensions using a honeycomb photonic crystal with a vortex Dirac gap by applying the generalized Kekulé modulations. We theoretically predict and experimentally show on a silicon-on-insulator platform that the Dirac-vortex cavities have scalable mode areas, arbitrary mode degeneracies, vector-beam vertical emission and compatibility with high-index substrates.
View Article and Find Full Text PDFLuminescent coinage metal complexes have shown promising applications as electroluminescent emitters, photocatalysts/photosensitizers, and bioimaging/theranostic agents, rendering them attractive alternatives to transition metal complexes based on iridium, ruthenium, and platinum that have extremely low earth abundance. In comparison to the widely studied Au(I) and Cu(I) complexes, Ag(I) complexes have seldom been explored in this field because of their inferior emission properties. Herein, we report a novel series of [Ag(N^N)(P^P)]PF complexes exhibiting highly efficient thermally activated delayed fluorescence by using easily accessible neutral diamine ligands and commercially available ancillary diphosphine chelates.
View Article and Find Full Text PDF