Motivation: Reticulate evolutionary histories, such as those arising in the presence of hybridization, are best modeled as phylogenetic networks. Recently developed methods allow for statistical inference of phylogenetic networks while also accounting for other processes, such as incomplete lineage sorting. However, these methods can only handle a small number of loci from a handful of genomes.
View Article and Find Full Text PDFBioinformatics
July 2018
Motivation: Phylogenetic networks represent reticulate evolutionary histories. Statistical methods for their inference under the multispecies coalescent have recently been developed. A particularly powerful approach uses data that consist of bi-allelic markers (e.
View Article and Find Full Text PDFPhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly.
View Article and Find Full Text PDFPLoS Comput Biol
January 2018
Phylogenetic networks are rooted, directed, acyclic graphs that model reticulate evolutionary histories. Recently, statistical methods were devised for inferring such networks from either gene tree estimates or the sequence alignments of multiple unlinked loci. Bi-allelic markers, most notably single nucleotide polymorphisms (SNPs) and amplified fragment length polymorphisms (AFLPs), provide a powerful source of genome-wide data.
View Article and Find Full Text PDFBMC Bioinformatics
November 2016
Background: Phylogenetic networks model reticulate evolutionary histories. The last two decades have seen an increased interest in establishing mathematical results and developing computational methods for inferring and analyzing these networks. A salient concept underlying a great majority of these developments has been the notion that a network displays a set of trees and those trees can be used to infer, analyze, and study the network.
View Article and Find Full Text PDF