Recent studies have shown that graphene oxide (GO) nanosheets can form a nacre-like bioinspired layered structure with polysaccharide of chitosan (CS), leading to composites with excellent mechanical properties. In this study, we go further steps by immobilization of Pd species (both Pd and Pd) within nacre-like bioinspired layered GO-CS composite paper-like membranes by vacuum-assisted self-assembly process to fabricate novel GO-CS-Pd composite membrane catalysts for the first time. Synergistic interactions from hydrogen bonding (between the GO nanosheets and CS chains) and ionic bonding (between the GO nanosheets and Pd ions) have been efficiently achieved, resulting in significantly improvement of the mechanical properties.
View Article and Find Full Text PDFThe significant volume of solvent required for the hydrothermal synthesis of zeolites remains the primary hurdle impeding industrial applications. With the benefits of reduced manufacturing costs, safety, and energy savings, reducing the use of solvents is one of the significant sought-after objectives. In this study, borosilicate zeolite B-MCM-22 is successfully obtained using a solvent-free synthesis method.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Unstable cathode/electrolyte interphase and severe interfacial side reaction have long been identified as the main cause for the failure of layered oxide cathode during fast charging and long-term cycling for rechargeable sodium-ion batteries. Here, we report a superionic conductor (NaV(PO), NVP) bonding surface strategy for O3-type layered NaNiFeMnO (NFM) cathode to suppress electrolyte corrosion and near-surface structure deconstruction, especially at high operating potential. The strong bonding affinity at the NVP/NFM contact interface stabilizes the crystal structure by inhibiting surface parasitic reactions and transition metal dissolution, thus significantly improving the phase change reversibility at high desodiation state and prolonging the lifespan of NFM cathode.
View Article and Find Full Text PDFIn this study, novel chitosan/polyethylene oxide/TiCT 2D MXene nanosheets (CS/PEO/TiCT) nanofibers were successfully prepared by a continuous electrospinning process. During the electrospinning process, induced by the syringe tip capillary effects and electric field force, the TiCT nanosheets were aligned along the direction of the nanofiber formation to occur a highly oriented structure. This well-ordered arrangement of the inorganic TiCT nanosheets within the organic polymer matrix nanofiber was similar with nacre-like 'brick-and-motar' structure to some extent, resulting in a marked increase in thermal stability and mechanical properties of the resultant CS/PEO/TiCT nanofiber.
View Article and Find Full Text PDF