Publications by authors named "Jiacen Sun"

Introduction: Sleep insufficiency has been linked to an increased risk of high blood pressure and cardiovascular diseases. Emerging studies have demonstrated that impaired baroreflex sensitivity (BRS) is involved in the adverse cardiovascular effects caused by sleep deprivation, however, the underlying mechanisms remain unknown. Therefore, the present study aims to clarify the role of abnormal renin-angiotensin system in the nucleus tractus solitarii (NTS) in impaired BRS induced by sleep deprivation.

View Article and Find Full Text PDF

It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that β-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension.

View Article and Find Full Text PDF

Background: Cold exposure has been considered an essential risk factor for the global disease burden, while its role in cardiovascular diseases is still underappreciated. The increase in frequency and duration of extreme cold weather events like cold spells makes it an urgent task to evaluate the effects of ambient cold on different types of cardiovascular disease and to understand the factors contributing to the population's vulnerability.

Methods: In the present systematic review and meta-analysis, we searched PubMed, Scopus, and Cochrane.

View Article and Find Full Text PDF

Gut microbiota is the largest and most complex microflora in the human body, which plays a crucial role in human health and disease. Over the past 20 years, the bidirectional communication between gut microbiota and extra-intestinal organs has been extensively studied. A better comprehension of the alternative mechanisms for physiological and pathophysiological processes could pave the way for health.

View Article and Find Full Text PDF

Circadian rhythm plays a significant role in maintaining the function of the cardiovascular system. Emerging studies have demonstrated that circadian disruption enhances the risk of cardiovascular diseases by activating the sympathetic nervous system; however, the underlying mechanisms remain unknown. Therefore, this study aimed to clarify the role of oxidative stress in the rostral ventrolateral medulla (RVLM) in sympathetic hyperactivity induced by circadian disruption.

View Article and Find Full Text PDF

On the basis of an abundance of elemental plasmonic nanocrystals identifiable by their unique morphology and intrinsic optoelectronic properties, it is necessary to rationally tailor the structural parameters to optimize the functionalities of nanoassemblies for application as plasmonic circuits/devices. Among them, the plasmonic superlattice membrane has emerged as a novel optically active metamaterial, which is constructed by nanocrystals at a two-dimensional (2D) plane with a highly ordered structure and strong plasmonic coupling interactions. Here, we report on the fabrication of a novel plasmonic superlattice membrane using bimetallic core-shell nano-sea urchins (Nano-SEUs) as meta-atoms.

View Article and Find Full Text PDF

β-Arrestin1 is a multifunctional scaffold protein with the ability to interact with diverse signaling molecules independent of G protein-coupled receptors. We previously reported that overexpression of β-arrestin1 in the rostral ventrolateral medulla (RVLM) decreased blood pressure (BP) and renal sympathetic nerve activity (RSNA) in spontaneously hypertensive rats (SHRs). Nitric oxide (NO) is widely reported to be involved in central cardiovascular regulation.

View Article and Find Full Text PDF

Oxidative stress in the rostral ventrolateral medulla (RVLM), a key region for blood pressure (BP) regulation, has been demonstrated to be responsible for the overactivity of the sympathetic nervous system in hypertension and heart failure. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is a key transcription factor that maintains redox homeostasis by governing a broad array of antioxidant genes in response to oxidative stress. β-Arrestin1 is a multifunctional scaffold protein with the ability to interact with diverse signaling molecules independent of G protein-coupled receptors (GPCRs), and its overexpression in the RVLM could reduce BP and renal sympathetic nerve activity (RSNA) in spontaneously hypertensive rats (SHR).

View Article and Find Full Text PDF

Persistent cardiac hypertrophy eventually leads to deterioration of heart function and changes to normal morphology. Decreased nitric oxide (NO) production plays a critical role in modulating cardiac hypertrophy. Interleukin enhancement binding factor 3 (ILF3), a member of the double-stranded RNA-binding protein family, is known to regulate the transcription and stability of mRNA.

View Article and Find Full Text PDF

Hypertension is a common chronic disease, and it is the strongest risk factor for cardiovascular disease. Recently, the number of patients with hypertension-related complications has increased significantly, adding a heavy burden to the public health system. It is known that chronic stress plays an important role in the pathogenesis of cardiovascular diseases such as hypertension and stroke.

View Article and Find Full Text PDF

Hypertension is characterized by sympathetic overactivity, which is associated with an enhancement in angiotensin receptor type I (AT1R) in the rostral ventrolateral medulla (RVLM). β-arrestin1, a canonical scaffold protein, has been suggested to show a negative effect on G protein-coupled receptors via its internalization and desensitization and/or the biased signaling pathway. The major objectives of the present study were to observe the effect of β-arrestin1 overexpression in the RVLM on cardiovascular regulation in spontaneously hypertensive rats (SHR), and further determine the effect of β-arrestin1 on AT1R expression in the RVLM.

View Article and Find Full Text PDF

Nitric oxide (NO) contributes to the central control of cardiovascular activity. The rostral ventrolateral medulla (RVLM) has been recognized as a pivotal region for maintaining basal blood pressure (BP) and sympathetic tone. It is reported that asymmetric dimethylarginine (ADMA), characterized as a cardiovascular risk marker, is an endogenous inhibitor of nitric oxide synthesis.

View Article and Find Full Text PDF

The imbalance between angiotensin II (Ang II) and angiotensin 1-7 (Ang 1-7) in the brain has been reported to contribute to cardiovascular dysfunction in hypertension. Exercise training (ExT) is beneficial to hypertension and the mechanism is unclear. This study was aimed to determine if ExT improves hypertension via adjusting renin angiotensin system in cardiovascular centers including the rostral ventrolateral medulla (RVLM).

View Article and Find Full Text PDF

Angiotensin-1-7 [Ang-(1-7)], acting via the Mas receptor in the central nervous system, is involved in the regulation of cardiovascular activity. Nitric oxide (NO) is implicated as an important modulator in the nucleus tractus solitarii (NTS), a key region involved in control of cardiovascular activity. The aim of the present study was to determine the role of phosphatidylinositol 3-kinase (PI3K) signaling in mediating the effect of Ang-(1-7) on NO generation in the NTS.

View Article and Find Full Text PDF