Publications by authors named "Jiacan Xu"

Hypoxic ischemic encephalopathy (HIE) refers to neonatal hypoxic brain injury caused by severe asphyxia during the perinatal period. With a high incidence rate and poor prognosis, HIE accounts for 2.4% of the global disease burden, imposing a heavy burden on families and society.

View Article and Find Full Text PDF

In tunnel boring projects, wear and tear in the tooling system can have significant consequences, such as decreased boring efficiency, heightened maintenance costs, and potential safety hazards. In this paper, a fault diagnosis method for TBM tooling systems based on SAV-SVDD failure location (SSFL) is proposed. The aim of this method is to detect faults caused by disk cutter wear during the boring process, which diminishes the boring efficiency and is challenging to detect during construction.

View Article and Find Full Text PDF

Motor imagery (MI) brain-computer interface (BCI) assist users in establishing direct communication between their brain and external devices by decoding the movement intention of human electroencephalogram (EEG) signals. However, cerebral cortical potentials are highly rhythmic and sub-band features, different experimental situations and subjects have different categories of semantic information in specific sample target spaces. Feature fusion can lead to more discriminative features, but simple fusion of features from different embedding spaces leading to the model global loss is not easily convergent and ignores the complementarity of features.

View Article and Find Full Text PDF

Glioblastoma is acknowledged as the most aggressive cerebral tumor in adults. However, the efficacy of current standard therapy is seriously undermined by drug resistance and suppressive immune microenvironment. Ferroptosis is a recently discovered form of iron-dependent cell death that may have excellent prospect as chemosensitizer.

View Article and Find Full Text PDF

In recent years, with the rapid development of deep learning, various deep learning frameworks have been widely used in brain-computer interface (BCI) research for decoding motor imagery (MI) electroencephalogram (EEG) signals to understand brain activity accurately. The electrodes, however, record the mixed activities of neurons. If different features are directly embedded in the same feature space, the specific and mutual features of different neuron regions are not considered, which will reduce the expression ability of the feature itself.

View Article and Find Full Text PDF

Surface electromyogram (sEMG) signals have been used in human motion intention recognition, which has significant application prospects in the fields of rehabilitation medicine and cognitive science. However, some valuable dynamic information on upper-limb motions is lost in the process of feature extraction for sEMG signals, and there exists the fact that only a small variety of rehabilitation movements can be distinguished, and the classification accuracy is easily affected. To solve these dilemmas, first, a multiscale time-frequency information fusion representation method (MTFIFR) is proposed to obtain the time-frequency features of multichannel sEMG signals.

View Article and Find Full Text PDF

Brain-computer interface (BCI) based on motor imagery (MI) electroencephalogram (EEG) decoding helps motor-disabled patients to communicate with external devices directly, which can achieve the purpose of human-computer interaction and assisted living. MI EEG decoding has a core problem which is extracting as many multiple types of features as possible from the multi-channel time series of EEG to understand brain activity accurately. Recently, deep learning technology has been widely used in EEG decoding.

View Article and Find Full Text PDF

Recognition of motor imagery intention is one of the hot current research focuses of brain-computer interface (BCI) studies. It can help patients with physical dyskinesia to convey their movement intentions. In recent years, breakthroughs have been made in the research on recognition of motor imagery task using deep learning, but if the important features related to motor imagery are ignored, it may lead to a decline in the recognition performance of the algorithm.

View Article and Find Full Text PDF