Publications by authors named "JiaYue Su"

DNA synthesis is a critical process for cell growth and division. In cancer patients, an enzyme called thymidine kinase 1 (TK1) is often elevated in the blood, making it a valuable biomarker for cancer diagnosis and treatment. However, previous studies have shown that recombinant TK1 can exist in unstable mixtures of tetramers and dimers, leading to inconsistent results and potentially affecting accuracy.

View Article and Find Full Text PDF

The enzymes 3-methylcrotonyl-coenzyme A (CoA) carboxylase (MCC), pyruvate carboxylase and propionyl-CoA carboxylase belong to the biotin-dependent carboxylase family located in mitochondria. They participate in various metabolic pathways in human such as amino acid metabolism and tricarboxylic acid cycle. Many human diseases are caused by mutations in those enzymes but their structures have not been fully resolved so far.

View Article and Find Full Text PDF

The translocase of the outer membrane (TOM) complex serves as the main gate for preproteins entering mitochondria and thus plays a pivotal role in sustaining mitochondrial stability. Precursor proteins, featuring amino-terminal targeting signals (presequences) or internal targeting signals, are recognized by the TOM complex receptors Tom20, Tom22, and Tom70, and then translocated into mitochondria through Tom40. By using chemical cross-linking to stabilize Tom20 in the TOM complex, this study unveils the structure of the human TOM holo complex, encompassing the intact Tom20 component, at a resolution of approximately 6 Å by cryo-electron microscopy.

View Article and Find Full Text PDF

Radiation-induced in situ tumor vaccination alone is very weak and insufficient to elicit robust antitumor immune responses. In this work, we address this issue by developing chiral vidarabine monophosphate-gadolinium nanowires (aAGd-NWs) through coordination-driven self-assembly. We elucidate the mechanism of aAGd-NW assembly and characterize their distinct features, which include a negative surface charge, ultrafine topography, and right-handed chirality.

View Article and Find Full Text PDF

Monkeypox (mpox) is spreading around the world, and its rapid diagnosis is of great significance. In the present study, a rapid and sensitive fluorescent chromatography assisted with cloud system was developed for point-of-care diagnosis of mpox. To screen high affinity antibodies, nanoparticle antigen AaLS-A29 was generated by conjugating A29 onto scaffold AaLS.

View Article and Find Full Text PDF

Monkeypox (mpox) is a zoonotic disease caused by monkeypox virus (MPXV) of the orthopoxvirus genus. The emergence and global spread of mpox in 2022 was declared as a public health emergency by World Health Organization. This mpox pandemic alarmed us that mpox still threaten global public health.

View Article and Find Full Text PDF

Foot-and-mouth disease (FMD) is an acute zoonosis causes significant economic losses. Vaccines able to stimulate efficient protective immune responses are urgently needed. In this study, Escherichia coli-derived recombinant VP1 of serotype A and O FMD virus (FMDV) was conjugated to thermostable scaffold lumazine synthase (LS) or Quasibacillus thermotolerans encapsulin (QtEnc) using a robust plug-and-display SpyTag/SpyCatcher system to generate multimeric nanovaccines.

View Article and Find Full Text PDF

Mitochondrial preproteins synthesized in cytosol are imported into mitochondria by a multisubunit translocase of the outer membrane (TOM) complex. Functioned as the receptor, the TOM complex components, Tom 20, Tom22, and Tom70, recognize the presequence and further guide the protein translocation. Their deficiency has been linked with neurodegenerative diseases and cardiac pathology.

View Article and Find Full Text PDF
Article Synopsis
  • BiP, a key member of the Hsp70 family found in the endoplasmic reticulum, is vital for protein folding and quality control.
  • New research shows that BiP can uniquely convert ATP to AMP under acidic conditions, which differs from the typical ADP production in other Hsp70s, indicating a new insight into its function and regulation.
View Article and Find Full Text PDF

Cellular protein homeostasis depends on heat shock proteins 70 kDa (Hsp70s), a class of ubiquitous and highly conserved molecular chaperone. Key to the chaperone activity is an ATP-induced allosteric regulation of polypeptide substrate binding and release. To illuminate the molecular mechanism of this allosteric coupling, here we present a novel crystal structure of an intact human BiP, an essential Hsp70 in ER, in an ATP-bound state.

View Article and Find Full Text PDF

DnaK, a major Hsp70 molecular chaperones in Escherichia coli, is a widely used model for studying Hsp70s. We recently solved a crystal structure of DnaK in complex with ATP and showed that DnaK was packed as a dimer in the crystal structure. Our previous biochemical studies supported the formation of a specific DnaK dimer as observed in the crystal structure in solution in the presence of ATP and suggested an important role of this dimer in efficient interaction with Hsp40 co-chaperones.

View Article and Find Full Text PDF