Publications by authors named "JiaLie Luo"

Adult neurogenesis in the dentate gyrus (DG) is impaired during Alzheimer's disease (AD) progression. Curcumin has been reported to reduce cell apoptosis and stimulate neurogenesis. This study aimed to investigate the influence of curcumin on adult neurogenesis in AD mice and its potential mechanism.

View Article and Find Full Text PDF

The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/β-catenin signaling pathway.

View Article and Find Full Text PDF
Article Synopsis
  • - Gamma-aminobutyric acid (GABA) is a key amino acid in the nervous system, synthesized from glutamate, and serves as the primary inhibitory neurotransmitter in mammals, especially in the brain and spinal cord.
  • - GABA is vital for regulating synaptic transmission, promoting neuronal development, and helping with relaxation and mental health issues like insomnia and depression.
  • - The different types of GABA receptors play distinct roles in regulating pain sensation and understanding these can lead to new treatments for pain management targeting specific receptors and pathways.
View Article and Find Full Text PDF
Article Synopsis
  • Peripheral regulatory T (pT) cells are crucial for maintaining immune tolerance and preventing inflammation in mucosal tissues, with IL-2 receptor (IL-2R) signaling playing a vital role in their development and upkeep.
  • Cathepsin W (CTSW) is a protein that is significantly increased in pT cells under certain conditions and is essential for controlling pT cell differentiation in a way that maintains immune balance.
  • Loss of CTSW leads to excessive pT cell formation, which protects against intestinal inflammation by inhibiting IL-2R signaling and limiting the activation of pathways that promote pT cell expansion.
View Article and Find Full Text PDF

The crosstalk between the immune and neuroendocrine systems is critical for intestinal homeostasis and gut-brain communications. However, it remains unclear how immune cells participate in gut sensation of hormones and neurotransmitters release in response to environmental cues, such as self-lipids and microbial lipids. We show here that lipid-mediated engagement of invariant natural killer T (iNKT) cells with enterochromaffin (EC) cells, a subset of intestinal epithelial cells, promoted peripheral serotonin (5-HT) release via a CD1d-dependent manner, regulating gut motility and hemostasis.

View Article and Find Full Text PDF

Resin glycosides, mainly distributed in plants of the family Convolvulaceae, are a class of novel and complex glycolipids. Their structural complexity and significant biological activities have received much attention from synthetic chemists, and a number of interesting resin glycosides have been synthesized. The synthesized resin glycosides and their analogues not only helped in structural verification, structural modification, and further biological activity exploration but also provided enlightenment for the synthesis of glycoside compounds.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized pathologically by the structural and functional impairments of synapses in the hippocampus, inducing the learning and memory deficiencies. Ras GTPase is closely related to the synaptic function and memory. This study was to investigate the effects of farnesyl transferase inhibitor lonafarnib on the synaptic structure and function in AD male mice and explore the potential mechanism.

View Article and Find Full Text PDF

How the enteric nervous system determines the pacing and propagation direction of neurogenic contractions along the colon remains largely unknown. We used a chemogenetic strategy to ablate enteric neurons expressing calretinin (CAL). Mice expressing human diphtheria toxin receptor (DTR) in CAL neurons were generated by crossing mice with -dependent mice.

View Article and Find Full Text PDF

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation.

View Article and Find Full Text PDF

Peripheral serotonin (5-HT) is mainly generated from the gastrointestinal tract and taken up and stored by platelets in the circulation. Although the gut is recognized as a major immune organ, how intestinal local immune responses control whole-body physiology via 5-HT remains unclear. Here, we show that intestinal inflammation enhances systemic platelet activation and blood coagulation.

View Article and Find Full Text PDF

Crystal structures activate innate immune cells, especially macrophages and initiate inflammatory responses. We aimed to understand the role of the mechanosensitive TRPV4 channel in crystal-induced inflammation. Real-time RT-PCR, RNAscope in situ hybridisation, and mice were used to examine TRPV4 expression and whole-cell patch-clamp recording and live-cell Ca imaging were used to study TRPV4 function in mouse synovial macrophages and human peripheral blood mononuclear cells (PBMCs).

View Article and Find Full Text PDF

Mucus produced by goblet cells in the gastrointestinal tract forms a biological barrier that protects the intestine from invasion by commensals and pathogens. However, the host-derived regulatory network that controls mucus secretion and thereby changes gut microbiota has not been well studied. Here, we identify that Forkhead box protein O1 (Foxo1) regulates mucus secretion by goblet cells and determines intestinal homeostasis.

View Article and Find Full Text PDF

Neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, are devastating diseases in the elderly world, which are closely associated with progressive neuronal loss induced by a variety of genetic and/or environmental factors. Unfortunately, currently available treatments for neurodegenerative disorders can only relieve the symptoms but not modify the pathological processes. Over the past decades, our group by collaborating with Profs.

View Article and Find Full Text PDF

The gastrointestinal tract is known as the largest endocrine organ that encounters and integrates various immune stimulations and neuronal responses due to constant environmental challenges. Enterochromaffin (EC) cells, which function as chemosensors on the gut epithelium, are known to translate environmental cues into serotonin (5-HT) production, contributing to intestinal physiology. However, how immune signals participate in gut sensation and neuroendocrine response remains unclear.

View Article and Find Full Text PDF

Background And Purpose: Hair follicle telogen to anagen transition results in a break in cellular quiescence of the hair follicle stem cells, which subsequently promotes hair follicle regeneration. Many critical molecules and signalling pathways are involved in hair follicle cycle progression. Transient receptor potential vanilloid 4 (TRPV4) is a polymodal sensory transducer that regulates various cutaneous functions under both normal and disease conditions.

View Article and Find Full Text PDF

Intestinal macrophages are critical for gastrointestinal (GI) homeostasis, but our understanding of their role in regulating intestinal motility is incomplete. Here, we report that CX3C chemokine receptor 1-expressing muscularis macrophages (MMs) were required to maintain normal GI motility. MMs expressed the transient receptor potential vanilloid 4 (TRPV4) channel, which senses thermal, mechanical, and chemical cues.

View Article and Find Full Text PDF

Background & Aims: Strategies are needed to increase gastrointestinal transit without systemic pharmacologic agents. We investigated whether optogenetics, focal application of light to control enteric nervous system excitability, could be used to evoke propagating contractions and increase colonic transit in mice.

Methods: We generated transgenic mice with Cre-mediated expression of light-sensitive channelrhodopsin-2 (ChR2) in calretinin neurons (CAL-ChR2 Cre+ mice); Cre- littermates served as controls.

View Article and Find Full Text PDF

The somatosensory system relays many signals ranging from light touch to pain and itch. Touch is critical to spatial awareness and communication. However, in disease states, innocuous mechanical stimuli can provoke pathologic sensations such as mechanical itch (alloknesis).

View Article and Find Full Text PDF

Gastrointestinal tract motility may be demoted significantly after surgery operations at least in part due to anaesthetic agents, but there is no comprehensive explanation of the molecular mechanism(s) of such adverse effects. Anesthetics are known to interact with various receptors and ion channels including several subtypes of transient receptor potential (TRP) channels. Two members of the canonical subfamily of TRP channels (TRPC), TRPC4 and TRPC6 are Ca-permeable cation channels involved in visceral smooth muscle contractility induced by acetylcholine, the primary excitatory neurotransmitter in the gut.

View Article and Find Full Text PDF

Zinc is a transition metal that has a long history of use as an anti-inflammatory agent. It also soothes pain sensations in a number of animal models. However, the effects and mechanisms of zinc on chemotherapy-induced peripheral neuropathy remain unknown.

View Article and Find Full Text PDF

Although both persistent itch and inflammation are commonly associated with allergic contact dermatitis (ACD), it is not known if they are mediated by shared or distinct signaling pathways. Here we show that both TRPA1 and TRPV1 channels are required for generating spontaneous scratching in a mouse model of ACD induced by squaric acid dibutylester (SADBE), a small molecule hapten, through directly promoting the excitability of pruriceptors. TRPV1 but not TRPA1 channels protect the skin inflammation, as genetic ablation of TRPV1 function or pharmacological ablation of TRPV1-positive sensory nerves promotes cutaneous inflammation in the SADBE-induced ACD.

View Article and Find Full Text PDF

Mammals have evolved neurophysiologic reflexes, such as coughing and scratching, to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases, including asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood.

View Article and Find Full Text PDF

Background: Chronic itch is a highly debilitating symptom that underlies many medical disorders with no universally effective treatments. Although unique neuronal signaling cascades in the sensory ganglia and spinal cord have been shown to critically promote the pathogenesis of chronic itch, the role of skin-associated cells remains poorly understood.

Objective: We sought to examine the cutaneous mechanisms underlying transient receptor potential vanilloid 4 (TRPV4)-mediated allergic and nonallergic chronic itch.

View Article and Find Full Text PDF