Publications by authors named "JiaJia Ming"

The selenization of natural products refers to the chemical modification method of artificially introducing selenium atoms into natural products to interact with the functional groups in the target molecule to form selenides. Nowadays, even though scientists in fields involving organic selenium compounds have achieved numerous results due to their continuous investment, few comprehensive and systematic summaries relating to their research results can be found. The present paper summarizes the selenization modification methods of several kinds of important natural products, such as polysaccharides, proteins/polypeptides, polyphenols, lipids, and cyclic compounds, as well as the basic principles or mechanisms of the selenizing methods.

View Article and Find Full Text PDF

In karst habitats under drought conditions, high bicarbonate (high pH), and an abundant nitrate soil environment, bicarbonate regulates the glycolysis (EMP) and pentose phosphate pathways (PPP), which distribute ATP and NADPH, affecting nitrate (NO) and ammonium (NH) utilization in plants. However, the relationship between EMP PPP and NO, and NH utilization and their responses to bicarbonate and variable ammonium still remains elusive. In this study, we used (, a non-karst-adaptable plant) and (, a karst-adaptable plant) as plant materials, employed a bidirectional nitrogen-isotope-tracing method, and performed the quantification of the contribution of EMP and PPP.

View Article and Find Full Text PDF

The aim of this experiment was to explore the effects of a new selenium (Se) source from Se-enriched Cardamine enshiensis (SeCe) on body weight loss, anti-oxidative capacity and meat quality of broilers under transport stress. A total of 240 one-day-old ROSS 308 broilers were allotted into four treatments with six replicate cages and 10 birds per cage using a 2 × 2 factorial design. The four groups were as follows: (1) Na2SeO3-NTS group, dietary 0.

View Article and Find Full Text PDF

The antioxidant properties of Se-containing peptides from Cardamine enshiensis (SeCPPs) and their impact on gut microbiota were studied in d-galactose (d-gal)- injected mice and antibiotic-treated mice. The structures of SeCPPs were identified by UPLC-Q-Extractive Orbitrap MS. In d-gal ageing mice, SeCPPs were associated with significantly decreased acetyl cholinesterase (AchE) activity, malondialdehyde (MDA) content, increased glutathione peroxidase (GSH-Px) activity, downregulated tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) levels (p < 0.

View Article and Find Full Text PDF

Sclerotinia sclerotiorum (S. sclerotiorum) is a soil-borne pathogen causing serious damage to the yield of oilseed rape. Selenium (Se) acted as a beneficial element for plants, and also proved to inhibit the growth of plant pathogens.

View Article and Find Full Text PDF

The perennial selenium (Se) hyperaccumulator (Brassicaceae) thrives in aquatic and subaquatic Se-rich environments along the Wuling Mountains, China. Using bright-field and epifluorescence microscopy, the present study determined the anatomical structures and histochemical features that allow this species to survive in Se-rich aquatic environments. The roots of have an endodermis with Casparian walls, suberin lamellae, and lignified secondary cell walls; the cortex and hypodermal walls have phi (Φ) thickenings; and the mature taproots have a secondary structure with a periderm.

View Article and Find Full Text PDF

Sclerotinia sclerotiorum (S. sclerotiorum) is a soil-borne pathogen with broad host range. Dissolved organic matter (DOM) plays a vital role in regulating microbial activity in soil.

View Article and Find Full Text PDF

Selenium (Se) in soil is beneficial for environmental stress tolerance of plants, and it has widespread toxic effects on pathogens. Based on the fact that Se significantly inhibited the growth of Sclerotinia sclerotiorum, we set experiments with different concentrations of Se to investigate the action of Se against S. sclerotiorum in this study.

View Article and Find Full Text PDF