Publications by authors named "JiaHao Lu"

Lithium (Li) metal anodes hold great promise for next-generation secondary batteries with high energy density. Unfortunately, several problems such as Li dendrite growth, low Coulombic efficiency and poor cycle life hinder the commercialization of Li metal anodes. Herein, we design a highly lithiophilic carbon cloth host modified with Sn-doped zinc oxide (ZnO) (ZnSn-CC) directly derived from a bimetallic ZnSn metal-organic framework (ZnSn-MOF), which boosts uniform Li plating/stripping during charge-discharge and effectively protects the Li metal anode.

View Article and Find Full Text PDF

The ground-state charge generation (GSCG) in photoactive layers determines whether the photogenerated carriers occupy the deep trap energy levels, which, in turn, affects the device performance of organic solar cells (OSCs). In this work, charge-quadrupole electrostatic interactions are modulated to achieve GSCG through a molecular strategy of introducing different numbers of F atom substitutions on the BTA3 side chain. The results show that 8F substitution (BTA3-8F) and 16F substitution (BTA3-16F) lead to different patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level changes.

View Article and Find Full Text PDF

Background: The efficacy of laminectomy procedures is contingent on the method of resection. The objective of this study was to investigate the impact of different methods of resection on the surgical safety of automated laminectomy robots, an area that remains uncharted.

Methods: Lamina resection surgeries using both drilling and layer-by-layer methods, are performed on ovine spinal samples.

View Article and Find Full Text PDF

This study demonstrates the expanded application of ion-exchange stationary phases (including strong cation exchange, SCX and strong anion exchange, SAX) in supercritical fluid chromatography (SFC), and more importantly, provides a deeper understanding of the retention mechanisms of these two stationary phases when using the same acidic additive. Phenylpropionic acid compounds (belonging to phenolic acids) were selected as probes. On the SCX column, the π-π and polar interactions originating from the bonded benzenesulfonic acid groups were important foundations for prolonging the retention time of solutes, but they were also the main reason for solutes' tailing profiles.

View Article and Find Full Text PDF

Neuromorphic systems that can emulate the behavior of neurons have garnered increasing interest across interdisciplinary fields due to their potential applications in neuromorphic computing, artificial intelligence and brain-machine interfaces. However, the optical modulation of nanofluidic ion transport for neuromorphic functions has been scarcely reported. Herein, inspired by biological systems that rely on ions as signal carriers for information perception and processing, we present a nanofluidic transistor based on a metal-organic framework membrane (MOFM) with optically modulated ion transport properties, which can mimic the functions of biological synapses.

View Article and Find Full Text PDF
Article Synopsis
  • Parametrically driven nonlinear resonators are important for quantum computing and sensing, showcasing interesting critical phenomena that occur independently of other quantum systems.! -
  • The study focuses on the ground state wavefunction, using the quantum ground state geometric tensor to create a phase diagram that shows a transition from normal to symmetry-breaking phases as the driving parameter ε increases, regardless of the phase ϕ.! -
  • The research confirms that the phase transition aligns with the quantum Rabi model's universality class and highlights that the quantum metric and Berry curvature exhibit diverging behaviors during the transition.!
View Article and Find Full Text PDF

Background: Previous observational studies have suggested that there appears to be a close association between mitochondrial function and psychiatric disorders, but whether a causal role exists remains unclear.

Methods: We extracted genetic instruments for 67 mitochondrial-related proteins and 10 psychiatric disorders from publicly available genome-wide association studies, and employed five distinct MR methods and false discovery rate correction to detect causal associations between them. Additionally, we conducted a series of sensitivity tests and additional model analysis to ensure the robustness of the results.

View Article and Find Full Text PDF

Early childhood marks a pivotal period in the maturation of executive function, the cognitive ability to consciously regulate actions and thoughts. Mindfulness-based interventions have shown promise in bolstering executive function in children. This study used the functional near-infrared spectroscopy technique to explore the impact of mindfulness-based training on young children.

View Article and Find Full Text PDF

Purpose: Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T and T mapping across the whole mouse brain with 4.

View Article and Find Full Text PDF

In this work, a proton-conductive inorganic filler based on polyoxovanadate (NH)[MnVO] (AMV) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIM TFSI) was synthesized for hybridization with sulfonated poly(aryl ether ketone sulfone) (SPAEKS) to address the "trade-off" between high proton conductivity and mechanical strength. The novel inorganic filler AMV-EMIM TFSI (AI) was uniformly dispersed and stable within the polymer matrix due to the enhanced ionic interaction. AI provided additional proton transport sites, leading to an elevated ion exchange capacity (IEC) and improved proton conductivity, even at low swelling ratios.

View Article and Find Full Text PDF

Background: Numerous insect species undertake long-distance migrations on an enormous scale, with great implications for ecosystems. Given that take-off is the point where it all starts, whether and how the external light and internal circadian rhythm are involved in regulating the take-off behaviour remains largely unknown. Herein, we explore this issue in a migratory pest, Cnaphalocrocis medinalis, via behavioural observations and RNAi experiments.

View Article and Find Full Text PDF

The extensive use of nitrogen fertilizer boosts rice (Oryza sativa) production but also harms ecosystems. Therefore, enhancing crop nitrogen use efficiency is crucial. Here, we performed map-based cloning and identified the EARLY FLOWERING3 (ELF3) like protein-encoding gene OsELF3-1, which confers enhanced nitrogen uptake in rice.

View Article and Find Full Text PDF

The shape of rice grains not only determines the thousand-grain weight but also correlates closely with the grain quality. Here we identified an ultra-large grain accession (ULG) with a thousand-grain weight exceeding 60 g. The integrated analysis of QTL, BSA, de novo genome assembled, transcription sequencing, and gene editing was conducted to dissect the molecular basis of the ULG formation.

View Article and Find Full Text PDF

High-performance thermal interface materials (TIMs) are highly desired for high-power electronic devices to accelerate heat dissipation. However, the inherent trade-off conflict between achieving high thermal conductivity and excellent compliance of filler-enhanced TIMs results in the unsatisfactory interfacial heat transfer efficiency of existing TIM solutions. Here, we report the graphene fiber (GF)-based elastic TIM with metal-level thermal conductivity via mechanical-electric dual-field synergistic alignment engineering.

View Article and Find Full Text PDF

Myricetin (1), Quercetin (2), Kaempferol (3) and Kaempferide (4) were flavonoids with phenolic hydroxyl groups. The antioxidant and pharmacological mechanisms of them were investigated in detail. The lowest hydroxyl dissociation enthalpies of 1, 2, 3 and 4 were calculated by DFT, respectively.

View Article and Find Full Text PDF

Herein, an improved subtraction model was proposed to characterise the polar stationary phases in supercritical fluid chromatography (SFC). Fifteen stationary phases were selected, including two types of aromatic columns, Waters Torus and Viridis series columns, as well as silica and amino columns. Ethylbenzene and Torus 1-AA were defined as the reference solute and column, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Small-cell neuroendocrine cervical carcinoma (SCNCC) is a rare and aggressive cancer with poor clinical outcomes, highlighting the need for more comprehensive research and treatment strategies.
  • The article reviews SCNCC's genetics and clinical management, focusing on genomic features found through next-generation sequencing, which may lead to new drug development opportunities.
  • It also discusses significant clinical challenges in treatment choices for early-stage patients and the exploration of advanced therapies like targeted treatments and immune checkpoint inhibitors in improving patient outcomes.
View Article and Find Full Text PDF
Article Synopsis
  • Lithium-sulfur (Li-S) batteries are seen as a promising alternative to lithium-ion batteries due to their high specific energy density, low cost, and environmental benefits, but they face challenges like the shuttle effect and slow conversion rates of lithium polysulfides (LiPSs).
  • Researchers developed high-entropy oxides on carbon cloth (CC/HEO) using a quick combustion method for the sulfur cathode, enhancing interaction with LiPSs and improving redox kinetics.
  • This innovative design led to Li-S batteries with excellent cyclability, showing only a 0.057% capacity decline after 1000 cycles and maintaining 78.2% capacity after 100 cycles at a high sulfur loading of 4.
View Article and Find Full Text PDF

In practical operating conditions, the lithium deposition behavior is often influenced by multiple coupled factors and there is also a lack of comprehensive and long-term validation for dendrite suppression strategies. Our group previously proposed an intermittent lithiophilic model for high-performance three-dimensional (3D) composite lithium metal anode (LMA), however, the electrodeposition behavior was not discussed. To verify this model, this paper presents a modified 3D carbon cloth (CC) backbone by incorporating NiFeO/FeO (NFFO) nanoparticles derived from bimetallic NiFe-MOFs.

View Article and Find Full Text PDF

Alpha-synuclein (α-syn) is closely related to the pathological process of Parkinson's disease (PD). Sensitive detection of α-syn is important for the early diagnosis and disease progression monitoring of PD. Herein, we report a binding-triggered hybridization chain reaction (HCR) cascade multi-site activated CRISPR/Cas12a signal amplification strategy for sensitive detection of α-syn.

View Article and Find Full Text PDF

Purpose: Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T and T mapping across the whole mouse brain with 4.

View Article and Find Full Text PDF

High open-circuit voltage (V) organic solar cells (OSCs) have received increasing attention because of their promising application in tandem devices and indoor photovoltaics. However, the lack of a precise correlation between molecular structure and stacking behaviors of wide band gap electron acceptors has greatly limited its development. Here, we adopted an asymmetric halogenation strategy (AHS) and synthesized two completely non-fused ring electron acceptors (NFREAs), HF-BTA33 and HCl-BTA33.

View Article and Find Full Text PDF

Driven by the strong adsorptive and catalytic ability of metal sulfides for soluble polysulfides, it is considered as a potential mediator to resolve the problems of shuttle effect and slow reaction kinetics of polysulfides in lithium-sulfur (Li-S) batteries. However, their further development is limited by poor electrical conductivity and bad long-term durability. Herein, one type of new catalyst composed of SnS/SnS heterostructures on hierarchical porous carbon (denoted as SnS/SnS-HPC) by a simple hydrothermal method is reported and used as an interlayer coating on the conventional separator for blocking polysulfides.

View Article and Find Full Text PDF