Genome-wide association studies (GWAS) have identified multiple risk variants for Parkinson's disease (PD). Nevertheless, how the risk variants confer the risk of PD remains largely unknown. We conducted a proteome-wide association study (PWAS) and summary-data-based mendelian randomization (SMR) analysis by integrating PD GWAS with proteome and protein quantitative trait loci (pQTL) data from human brain, plasma and CSF.
View Article and Find Full Text PDFBackground: While previous genome-wide association studies (GWAS) have identified multiple risk variants for migraine, there is a lack of evidence about how these variants contribute to the development of migraine. We employed an integrative pipeline to efficiently transform genetic associations to identify causal genes for migraine.
Methods: We conducted a proteome-wide association study (PWAS) by combining data from the migraine GWAS data with proteomic data from the human brain and plasma to identify proteins that may play a role in the risk of developing migraine.
GGC repeat expansion in the 5' untranslated region (UTR) of NOTCH2NLC is associated with a broad spectrum of neurological disorders, especially neuronal intranuclear inclusion disease (NIID). Studies have found that GGC repeat expansion in NOTCH2NLC induces the formation of polyglycine (polyG)-containing protein, which is involved in the formation of neuronal intranuclear inclusions. However, the mechanism of neurotoxicity induced by NOTCH2NLC GGC repeats is unclear.
View Article and Find Full Text PDFBackground: Lacunar stroke accounts for a quarter of all strokes, but little is known about the underlying pathological mechanisms. Analysis of serum metabolites may allow better understanding of the underlying biological processes. Mendelian randomization (MR) can provide information on the causality of associations.
View Article and Find Full Text PDFObjective: GGC repeat expansions in the human-specific gene have been reported as the cause of neuronal intranuclear inclusion disease (NIID). Given the clinical overlap of cognitive impairment in NIID and cerebral small vessel disease (CSVD), both diseases have white matter hyperintensity on T2-fluid-attenuated inversion recovery sequences of brain MRI, and white matter hyperintensity is a primary neuroimaging marker of CSVD on MRI. Therefore, we hypothesised that the GGC repeat expansions might also contribute to CSVD.
View Article and Find Full Text PDF